Soviet Applied Mechanics

, Volume 25, Issue 3, pp 256–260 | Cite as

Nonsteady temperature field and stress-intensity coefficients in plates with heat-insulated cracks

  • O. V. Poberezhnyi
Article
  • 14 Downloads

Keywords

Temperature Field Nonsteady Temperature Nonsteady Temperature Field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    I. I. Vorovich, V. M. Aleksandrov, and V. A. Babeshko, Nonclassical Mixed Problems of Elasticity Theory [in Russian], Nauka, Moscow (1974).Google Scholar
  2. 2.
    I. V. Gaivas' and G. S. Kit, “Nonsteady thermoelasticity problem for a plate with a semiinfinite heat-insulated cut”, Probl. Prochn., No. 6, 72–75 (1974).Google Scholar
  3. 3.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Nauka, Moscow (1971).Google Scholar
  4. 4.
    F. D. Gakhov, Boundary Problems [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  5. 5.
    V. A. Ditkin and A. P. Prudnikov, Operational Calculus [in Russian], Vysshaya Shkola, Moscow (1975).Google Scholar
  6. 6.
    G. S. Kit and O. V. Poberezhnyi, “Integral equations of nonsteady heat-conduction problems for bodies with cracks”, Mat. Met. Fiz.-Mekh. Pol., No. 12, 58–63 (1980).Google Scholar
  7. 7.
    G. S. Kit and O. V. Poberezhnyi, “Nonsteady thermoelasticity problem for a plate with a crack in the presence of heat transfer from the lateral surfaces”, Fiz.-Khim. Mekh. Mater.,12, No. 4, 73–78 (1976).Google Scholar
  8. 8.
    G. S. Kit and O. V. Poberezhnyi, “Influence of heat transfer on the stress state of a plate with a crack”, Fiz.-Khim. Mekh. Mater., No. 5, 43–49 (1970).Google Scholar
  9. 9.
    V. A. Kozlov, V. G. Maz'ya, and V. Z. Parton, “Asymptotes of stress-intensity coefficients in quasistatic temperature problems for a region with a cut”, Prikl. Mat. Mekh.,49, No. 4, 627–636 (1985).Google Scholar
  10. 10.
    B. A. Kudryavtsev, “Quasistatic thermoelasticity problem for a plane with a semiinfinite cut”, Din. Sploshn. Sred., No. 6, 29–31 (1970).Google Scholar
  11. 11.
    B. A. Kudryavtsev and V. Z. Parton, “Quasistatic temperature problem for a plane with a cut”, Probl. Prochn., No. 2, 46–51 (1970).Google Scholar
  12. 12.
    N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).Google Scholar
  13. 13.
    O. V. Poberezhnyi and I. V. Gaivas', “Influence of nonsteady temperature field and heat transfer of a plate on the stress-intensity coefficients”, Prikl. Mekh.,18, No. 6, 124–127 (1982).Google Scholar
  14. 14.
    O. V. Poberezhnyi, “Influence of the magnitude of the region of action of the temperature load on the stress-intensity coefficients of a plate with a semiinfinite cut”, Mat. Met. Fiz.-Mekh. Pol., No. 17, 55–59 (1983).Google Scholar
  15. 15.
    O. V. Poberezhnyi and M. D. Tkach, “Method of numerical inversion of a Laplace transformation”, Mat. Met. Fiz.-Mekh. Pol., No. 23, 29–32 (1986).Google Scholar
  16. 16.
    Ya. S. Podstrigach and Yu. M. Kolyano, Nonsteady Temperature Fields and Stress in Thin Plates [in Russian], Naukova Dumka, Kiev (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • O. V. Poberezhnyi

There are no affiliations available

Personalised recommendations