Soviet Applied Mechanics

, Volume 21, Issue 4, pp 366–373 | Cite as

Nonlinear shell theory on the basis of the concept of finite rotation

  • Ya. F. Kayuk
  • V. G. Sakhatskii
Article
  • 17 Downloads

Keywords

Shell Theory Finite Rotation Nonlinear Shell Nonlinear Shell Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    N. A. Alumyaé, “Differential equation of state of thin-walled elastic shells in the postcritical stage,” Prikl. Mat. Mekhan.,13, No. 1, 95–106 (1949).Google Scholar
  2. 2.
    N. A. Alumyaé, “Writing the basic relations of nonlinear shell theory,” Prikl. Mat. Mekhan.,20, No. 1, 136–139 (1956).Google Scholar
  3. 3.
    K. Z. Galimov, Principles of the Nonlinear Theory of Thin-Walled Shells [in Russian], Izd. Kazan. Univ., Kazan' (1975).Google Scholar
  4. 4.
    Ya. F. Kayuk and V. G. Sakhatskii, “Method of constructing the deformation characteristics in nonlinear shell theory,” Prikl. Mekhan.,19, No. 5, 36–41 (1983).Google Scholar
  5. 5.
    A. I. Lur'e, Analytical Mechanics [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  6. 6.
    A. I. Lur'e, Nonlinear Elasticity Theory [in Russian], Nauka, Moscow (1980).Google Scholar
  7. 7.
    J. G. Simmonds and D. A. Danielson, “Nonlinear theory of shells with a vector of finite rotation and a vectorial stress function,” Proc. ASME, Applied Mechanics [Russian translation], No. 4, 228–236 (1972).Google Scholar
  8. 8.
    K. Z. Galimov, Yu. P. Artyukhin, S. N. Karasev, et al., Shell Theory Taking Account of Transverse Shear [in Russian], Izd. Kazan. Univ., Kazan' (1977).Google Scholar
  9. 9.
    K. F. Chernykh, Linear Shell Theory [in Russian], Vol. 2, Izd. Leningr. Univ., Leningrad (1964).Google Scholar
  10. 10.
    J. G. Simmonds and D. A. Danielson, “Nonlinear shell theory with a finite rotation vector,” Proc. Kon. Ned. Akad. Wetensch., Ser. B, No. 73, 460–478 (1970).Google Scholar
  11. 11.
    W. Pietraszkiewicz, Finite Rotations and Lagrangian Description in the Nonlinear Theory of Shells, Pol. Sci. Publ., Warsaw (1979).Google Scholar
  12. 12.
    W. Pietraszkiewicz and M. L. Szwabowicz, “Entirely Lagrangian nonlinear theory of thin shells,” Arch. Mech.,33, No. 2, 273–288 (1981).Google Scholar
  13. 13.
    W. Pietraszkiewicz and J. Badur, “Finite rotations in the description of continuum deformation,” Int. J. Eng. Sci.,21, No. 9, 1097–1115 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Ya. F. Kayuk
  • V. G. Sakhatskii

There are no affiliations available

Personalised recommendations