Advertisement

Soviet Applied Mechanics

, Volume 15, Issue 8, pp 709–716 | Cite as

Stability of vibrations of a cylindrical shell filled with a liquid under conditions of nonlinear resonances

  • V. S. Pavlovskii
  • V. G. Filin
Article
  • 17 Downloads

Keywords

Cylindrical Shell Nonlinear Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. V. Bolotin, “Motion of a liquid in a vibrating vessel”, Prikl. Mat. Mekh.,20, No. 2, 293–294 (1956).Google Scholar
  2. 2.
    V. Z. Vlasov, Selected Works [in Russian], Vol. 1, Akad. Nauk SSSR, Moscow (1962).Google Scholar
  3. 3.
    R. F. Ganiev, “Resonance phenomena for nonlinear vibrations of rigid bodies”, Prikl. Mekh.,8, No. 12, 45–70 (1972).Google Scholar
  4. 4.
    G. S. Narimanov, “Motion of a vessel partially filled with a liquid; account of the largeness of the motion of the latter”, Prikl. Mat. Mekh.,21, No. 4, 513–524 (1957).Google Scholar
  5. 5.
    V. S. Pavlovskii and V. G. Filin, “Stability of a cylindrical shell filled with a liquid under conditions of parametric resonances”, in: Questions of Mathematical Physics and Theory of Vibrations [in Russian], No. 3, Ivanova (1975), pp. 77–89.Google Scholar
  6. 6.
    N. G. Chebotarev and N. S. Meiman, The Routh-Hurwitz Problem for Polynomials and Integral Functions [in Russian], Akad. Nauk SSSR, Moscow-Leningrad (1949).Google Scholar
  7. 7.
    V. P. Shmakov, “Equations of axisymmetric vibrations of a cylindrical shell with a liquid filler”, Izv. Akad. Nauk SSSR, Mekh. Mashinostr., No 1, 170–173 (1964).Google Scholar
  8. 8.
    H. F. Bauer, S. S. Chang, and J. T. S. Wang, “Nonlinear liquid motion in a longitudinally excited container with elastic bottom”, AIAA J.,9, No. 12, 2333–2339 (1971).Google Scholar
  9. 9.
    J. H. Woodward and H. F. Bauer, “Fluid behavior in a longitudinally excited, cylindrical tank of arbitrary sector-annular cross section”, AIAA J.,8, No. 4, 713–719 (1970).Google Scholar
  10. 10.
    F. T. Dodge, D. D. Kana, and H. N. Abramson, “Liquid surface oscillations in longitudinally excited rigid cylindrical containers”, AIAA J.,3, No. 4, 685–695 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • V. S. Pavlovskii
  • V. G. Filin

There are no affiliations available

Personalised recommendations