Applied physics

, Volume 20, Issue 3, pp 207–211 | Cite as

The sputtering of gallium arsenide at elevated temperatures

  • M. Szymoński
  • R. S. Bhattacharya
Contributed Papers


The energy distribution of atoms and molecules sputtered from a polycrystalline GaAs sample with a 6 keV Ar ion beam have been measured. The temperature of the target ranged from 30°C to 350°C. Total sputtering yield of the investigated sample has also been measured. The results clearly show that there is a large contribution of molecular component in the sputtered flux and that the molecular component increases above 250°C in comparison to the atomic components thus yielding an increase in the total sputtering yield, as observed previously by Brozdowska et al. The enhanced molecular component at temperatures above 250°C can be explained by the appearance of a spike effect. The results obtained at low temperature can be explained in terms of the collision cascade mode. There is no contribution of beam-induced thermal vaporization to the sputtering of GaAs.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Proc. 2nd Intern. Conf. on Ion Implantation in Semiconductors, ed. by I. Ruge and J. Granl (Springer, Berlin, Heidelberg, New York 1971)Google Scholar
  2. 2.
    D.J. Mazey, R.S. Nelson: Radiat. Eff.1, 229 (1969)Google Scholar
  3. 3.
    R. Bicknell, P.L.F. Hemment, E.C. Bell, J.E. Tansey: Phys. Stat. Sol. A12, K9 (1972)CrossRefGoogle Scholar
  4. 4.
    S.T. Picraux: inProc. of 3rd Intern. Conf. on Ion Implantation in Semiconductors, ed. by B.L. Crowder (Plenum Press, New York, London 1973) p. 641Google Scholar
  5. 5.
    B. Brozdowska-Warczak, L. Gabŀa, R. Pedrys, M. Szymoński, A. Warczak: Surf. Sci.75, 61 (1978)CrossRefGoogle Scholar
  6. 6.
    J. Farren, W.J. Scaife: Talanta15, 1217 (1968)CrossRefGoogle Scholar
  7. 7.
    M. Szymoński, H. Overeijnder, A.E. de Vries: Radiat. Eff.36, 189 (1978)Google Scholar
  8. 8.
    P. Sigmund: Rev. Roum. Phys.17, 1079 (1972)Google Scholar
  9. 9.
    P. Sigmund: Phys. Rev.184, 383 (1969)CrossRefADSGoogle Scholar
  10. 10.
    K.B. Winterbon:Ion Implantation Range and Energy Deposition Distributions (Plenum Press, New York 1975)Google Scholar
  11. 11.
    M.W. Thompson, R.S. Nelson: Phil. Mag.7, 2015 (1962)Google Scholar
  12. 12.
    R.S. Nelson: Phil. Mag.11, 291 (1965)Google Scholar
  13. 13.
    G.E. Chapman, B.W. Farmery, M.W. Thompson, J.H. Wilson: Rad. Effects13, 121 (1972)Google Scholar
  14. 14.
    M. Szymoński, R.S. Bhattacharya, H. Overeijinder, A.E. de Vries: J. Phys. D (Appl. Phys.)11, 751 (1978)CrossRefADSGoogle Scholar
  15. 15.
    R. Kelly: Radiat. Eff.32, 91 (1977)Google Scholar
  16. 16.
    P. Sigmund: InInelastic Ion-Surface Collisions, ed. by N.H. Toll et al (Academic Press, New York 1978)Google Scholar
  17. 17.
    J.A. Moore, G. Carter, A.W. Tinsley: Radiat. Eff.25, 49 (1975)Google Scholar
  18. 18.
    D.A. Thompson, R.S. Walker, J.A. Davies: Radiat. Eff.32, 135 (1977)Google Scholar
  19. 19.
    G.P. Können, A. Tip, A.E. de Vries: Radiat. Eff.26, 23 (1975)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • M. Szymoński
    • 1
  • R. S. Bhattacharya
    • 2
  1. 1.Institute of PhysicsJagiellonian UniversityKrakówPoland
  2. 2.Department of Engineering PhysicsMcMaster UniversityHamiltonCanada

Personalised recommendations