Applied physics

, Volume 16, Issue 4, pp 425–432 | Cite as

Particle densities in a decaying SF6 plasma

  • K. P. Brand
  • J. Kopainsky
Contributed Papers

Abstract

Particle densities are determined for a decaying axially blown SF6 are between current zero and brekdown, some 100 μs later. During the time of interest, primarily only atoms, diatomic molecules and ions can be built up by reactions. Therefore, in a first approach equilibrium densities are derived for SF6 which has decomposed into its considemic and diatomic components. In a second approach reaction kinetics are considered. It turns out that the development of densities occurs in two steps. During the first approx. 100 μs there is a strong deviation from equilibrium. Afterwards the most abundant particles remain near their partial, diatomic equilibrium values. Near breakdown the degree of ionization is of the order of 1013 cm−3 with the most abundant ions S 2 + and F. This density is sufficient to distort the applied electric field. Future theories of breakdown in hot gases must take into account this principal difference as compared with the conditions in cold gases.

PACS

52.75Kq 52.25Dg 52.80Mg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.Hermann, U.Kogelschatz, K.Ragaller, E.Schade: J. Phys. D (Appl. Phys.)7, 607–619 (1974)CrossRefADSGoogle Scholar
  2. 2.
    W.Hermann, U.Kogelschatz, L.Niemeyer, K.Ragaller, E.Schade: J. Phys. D (Appl. Phys.)7, 1703–1722 (1974)CrossRefADSGoogle Scholar
  3. 3.
    W.Hermann, U.Kogelschatz, L.Niemeyer, K.Ralgaller, E.Schade: IEEE Trans. PAS-95, 1165–1176 (1976)Google Scholar
  4. 4.
    T.H.Lee:Physics and Engineering of High Power Switching Devices (MIT Press, Cambridge, Massachusetts, 1975) pp. 295Google Scholar
  5. 5.
    B.Eliasson, E.Schade: XIII Intern. Conf. on Phenomena in Ionized Gases, Berlin (1977) p. 409Google Scholar
  6. 6.
    J.Kopainsky: Influence of the are on breakdown phenomena in circuit breakers, BBC-Symposium on Current Interruption in High-Voltage Networks, Baden, Switzerland, 1977. To appear as book edited by K.Ragaller, to be published by Plenum PressGoogle Scholar
  7. 7.
    W.Frie: Z. Physik201, 269–294 (1967)CrossRefGoogle Scholar
  8. 8.
    P.Swarbrick: Brit. J. Appl. Phys.18, 419–426 (1967)CrossRefADSGoogle Scholar
  9. 9.
    R.L.Wikins: J. Chem. Phys.51, 853–854 (1968)CrossRefGoogle Scholar
  10. 10.
    V.A.Belov, A.M.Semenov: High Temp.9, 159–163 (1971)Google Scholar
  11. 11.
    J.J.Lowke, R.W.Liebermann: J. Appl. Phys.43, 1991–1994 (1972)CrossRefADSGoogle Scholar
  12. 12.
    C.E.Moore:Atomic Energy Levels, Vol. 1 (NBS, Washington, DC 1949)Google Scholar
  13. 13.
    C.E.Moore:Atomic Energy Levels, Vol. II (NBS, Washington, DC 1952)Google Scholar
  14. 14.
    C.E.Moore:Atomic Energy Levels, Vol. III (NBS, Washington, DC 1958)Google Scholar
  15. 15.
    G.Herzberg:Molecular Spectra and Molecular Structure, Vol. II (Van Nostrand, New York 1966) p. 501Google Scholar
  16. 16.
    R.J.Celotta, R.A.Bennett, J.L.Hall: J. Chem. Phys.60, 1740–1745 (1974)CrossRefGoogle Scholar
  17. 17.
    C.J.Ultee: Chem. Phys. Lett.46, 366–367 (1977)CrossRefADSGoogle Scholar
  18. 18.
    J.C.Keck: Adv. Chem. Phys.13, 85–121 (1967)Google Scholar
  19. 19.
    W.McDaniell:Collision Phenomena in Ionized Gases (Wiley & Sons New York 1964) p. 582Google Scholar
  20. 20.
    A.Mandl: J. Chem. Phys.64, 903–905 (1976)CrossRefADSGoogle Scholar
  21. 21.
    A.Mandl: J. Chem. Phys.59, 3423–3424 (1973)CrossRefGoogle Scholar
  22. 22.
    W.Lotz: Astrophys. J. Suppl.14, 207–238 (1967)ADSGoogle Scholar
  23. 23.
    P.R.Preussner: Diss. Univ. Bonn (1976)Google Scholar
  24. 24.
    L.G.Christophorou:Atomic and Molecular Radiative Physics (Wiley Interscience, London 1971) p. 594Google Scholar
  25. 25.
    D.R.Bates, A.Dalgarno in D.R.Bates (Ed.):Atomic and Molecular Processes (Academic Press, New York 1962) pp 245–271Google Scholar
  26. 26.
    W.McDaniell:The Mobility and Diffusion of Ions in Gases (Wiley & Sons New York 1973) Table II-2Google Scholar
  27. 27.
    JANAF.Thermochemical Tables, 2nd ed. (Nat. Stand. Ref. Data Ser. 37, NBS, Washington, DC 1971)Google Scholar
  28. 28.
    A.G.Gaydon:Dissociation Energies and Spectra of Diatomic Molecules (Chapman and Hall, London 1968)Google Scholar
  29. 29.
    T.L.Gilbert, A.C.Wahl: J. Chem. Phys.55, 5247–5261 (1971)CrossRefGoogle Scholar
  30. 30.
    W.A.Chupka, J.Berkowitz, D.Gutmann: J. Chem. Phys55, 2724–2733 (1971)CrossRefGoogle Scholar
  31. 31.
    P.A.G.O'Hare: J. Chem. Phys.59, 3842–3847 (1973)CrossRefGoogle Scholar
  32. 32.
    A.Carrington, G.N.Currie, T.A.Miller, D.H.Levy: J. Chem. Phys.50, 2726–2732 (1969)CrossRefGoogle Scholar
  33. 33.
    D.L.Hildenbrand: J. Phys. Chem.77, 897–902 (1973)CrossRefGoogle Scholar
  34. 34.
    P.Bradt, F.L.Mohler, V.H.Dibeler: J. Res. Nat. Bur. Stand.57, 223–225 (1956)Google Scholar
  35. 35.
    American Institute of Physics Handbook, 3rd ed. (McGraw Hill, New York 1972)Google Scholar
  36. 36.
    A.J.Banister, L.F.Moore, J.S.Padley inInorganic Sulfur Chemistry, ed. by G.Nickless (Elsevier, Amsterdam 1968) pp. 137–198Google Scholar
  37. 37.
    E.Hinnov, J.G.Hirschberg: Phys. Rev.125, 795–801 (1962)CrossRefADSGoogle Scholar
  38. 38.
    W.McDaniell, cf. (Wiley & Sons New York 1964) [19], p. 610Google Scholar
  39. 39.
    W.McDaniell, cf. (Wiley & Sons New York 1964), [19], p. 242 and 253Google Scholar
  40. 40.
    L.G.Christophorou, cf. (Wiley Interscience, London 1971) [24], p. 599Google Scholar
  41. 41.
    J.T.Herron, V.H.Dibeler: J. Chem. Phys.32, 1884–1885 (1960)CrossRefGoogle Scholar
  42. 42.
    H.S.W.Massey:Negative Ions, 3rd ed. (Cambridge University Press, Cambridge 1976)Google Scholar
  43. 43.
    R.S.Berry, C.W.Reimann: J. Chem. Phys.38, 1540–1543 (1963)CrossRefGoogle Scholar
  44. 44.
    W.C.Linneberger, B.W.Woodward: Phys. Rev. Lett.25, 424–427 (1970)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • K. P. Brand
    • 1
  • J. Kopainsky
    • 1
  1. 1.Brown Boveri Research CenterBadenSwitzerland

Personalised recommendations