Journal of Automated Reasoning

, Volume 12, Issue 3, pp 351–358 | Cite as

An extension of a procedure to prove statements in differential geometry

  • Giuseppa Carra' Ferro
Article

Abstract

An extension of the Carra'-Gallo procedure is presented. By using this extension, one can prove the validity of certain examples that are not within the scope of that procedure.

Key words

differential dimension differential dimension polynomial hypothesis set conclusion set nonconclusion set conclusion-nonconclusion set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buchberger, B.: Some properties of Gröbner bases for polynomial ideals,ACM SIGSAM Bull. 10 (1976), 19–21.Google Scholar
  2. 2.
    Carra' Ferro, G.: Gröbner Bases and Differential Algebra, inLecture Notes in Comp. Sci. 356, Springer, New York, 1987, pp. 129–140.Google Scholar
  3. 3.
    Carra' Ferro, G.: Some Remarks on the Differential Dimension, inLecture Notes in Comp. Sci. 357, Springer, New York, 1988, pp. 152–163.Google Scholar
  4. 4.
    Carra' Ferro, G. and Gallo, G.: A Procedure to Prove Geometrical Statements, inLecture Notes in Comp. Sci. 356, Springer, New York, 1987, pp. 141–150.Google Scholar
  5. 5.
    Carra' Ferro, G. and Gallo, G.: A procedure to prove statements in differential geometry,J. Automat. Reasoning 6 (1990), 203–209.Google Scholar
  6. 6.
    Cartan, E.:Les systèmes différentieles extérieurs et leuers applications géometrics, Hermann, Paris, 1945.Google Scholar
  7. 7.
    Chou, S. C. and Gao, X. S.: Automated reasoning in differential geometry and mechanics using the characteristic set method part I and II,J. Automat. Reasoning 10 (1993), 161–189.Google Scholar
  8. 8.
    Ganzha, V. G., Meleshko, S. V., and Shelest, V. P.: Application of Reduce system for analyzing consistency of systems of PDE's, inProceedings of ISSAC'90, Addison-Wesley, New York, 1990, p. 301.Google Scholar
  9. 9.
    Ganzha, V. G., Meleshko, S. V., and Strampp, W.: The Application of the REDUCE system to the compatibility analysis of gasdynamic equations, Preprint, 1992.Google Scholar
  10. 10.
    Janet, M.: Sur les systèmes d'équations aux derivées partielles,J. Math. 3 (1920), 65–151.Google Scholar
  11. 11.
    Kapur, D.: Using Gröbner bases to reason about geometry problems,J. Symbolic Comput. 2(4) (1986), 399–405.Google Scholar
  12. 12.
    Kolchin, E. R.:Differential Algebra and Algebraic Groups, Academic Press, New York, 1973.Google Scholar
  13. 13.
    Kuranishi, M.:Lectures on Involutive Systems of Partial Differential Equations, Publ. Soc. Math. San Paulo, 1967.Google Scholar
  14. 14.
    Kutzler, B. and Stifter, S.: On the application of the Buchberger's algorithm to automated geometry theorem proving,J. Symbolic Comput. 2(4) (1986), 389–398.Google Scholar
  15. 15.
    Pommaret, J. F.:Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, New York, 1978.Google Scholar
  16. 16.
    Pommaret, J. F.:Differential Galois Theory, Gordon and Breach, New York, 1983.Google Scholar
  17. 17.
    Reid, G. J.: Algorithms for reducing a system of PDE's to standard form, determining the dimension of its solution space and calculating its Taylor series solution,European J. Appl. Math. 2 (1991), 293–318.Google Scholar
  18. 18.
    Riquier, C. H.:Les systèmes d'équations aux derivées partielles, Gauthier-Villars, Paris, 1910.Google Scholar
  19. 19.
    Ritt, J. F.:Differential Algebra, AMS Coll. Publ. 33, Amer. Math. Soc., Provident, 1950.Google Scholar
  20. 20.
    Schwarz, F.: An algorithm for determining the size of symmetry groups, Preprint, 1992.Google Scholar
  21. 21.
    Schwarz, F.: Reduction and completion algorithms for partial differential equations, inProc. ISSAC'92, preprint, 1992.Google Scholar
  22. 22.
    Thomas, J. M.: Riquier's existence theorems,Ann. Math. 30 (1929), 285–321.Google Scholar
  23. 23.
    Thomas, J. M.: Riquier's existence theorems,Ann. Math. 35 (1934), 306–311.Google Scholar
  24. 24.
    Wu, W. T.:A Constructive Theory of Differential Algebraic Geometry Based on Works of J. F. Ritt with Particular Applications to Mechanical Theorem Proving of Differential Geometries, Lecture Notes in Math. 1255, Springer, New York, 1987.Google Scholar
  25. 25.
    Wu, W. T.: Mechanical theorem proving of differential geometries and some of its applications in mechanics,J. Automat. Reasoning 7(2) (1991), 171–191.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Giuseppa Carra' Ferro
    • 1
  1. 1.Department of MathematicsUniversity of CataniaItaly

Personalised recommendations