Soviet Applied Mechanics

, Volume 19, Issue 5, pp 437–441 | Cite as

Solution of the bending problem of elastoplastic plates

  • V. M. Goncharenko
  • I. M. Marchuk


Elastoplastic Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. Glowinski, J. L. Lions and R. Tremolieres, Analyse Numérique des Inéquations Variationnelles, Vols. 1 and 2, Dunod, Paris (1976).Google Scholar
  2. 2.
    N. M. Gyunter (Gunter), Potential Theory and Its Applications to Basic Problems of Mathematical Physics, Ungar, New York (1967).Google Scholar
  3. 3.
    G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer, Berlin (1976).Google Scholar
  4. 4.
    A. A. Il'yushin, Plasticity, Part I [in Russian], Gostekhizdat, Moscow (1948).Google Scholar
  5. 5.
    V. D. Klyushnikov, The Mathematical Theory of Plasticity [in Russian], Izd. Mosk. Univ., Moscow (1979).Google Scholar
  6. 6.
    W. T. Koiter, General Theorems for Elastic—Plastic Solids, in: Progress in Solid Mechanics, Vol. 1, North-Holland, Amsterdam (1960), pp. 165–221.Google Scholar
  7. 7.
    B. L. Pelekh, A Generalized Theory of Shells [in Russian], Vishcha Shkola, L'vov (1978).Google Scholar
  8. 8.
    I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam (1976).Google Scholar
  9. 9.
    N. Coutris, “Flexion elastoplastique d'une plaque,” C. R. Acad. Sci. Paris,270, No. 21, A1377-A1380 (1970).Google Scholar
  10. 10.
    J. Nečas, “Les méthodes directes en théorie des équations elliptiques,” Masson, Paris (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • V. M. Goncharenko
  • I. M. Marchuk

There are no affiliations available

Personalised recommendations