Advertisement

Soviet Applied Mechanics

, Volume 13, Issue 8, pp 773–779 | Cite as

An approximate method of solving the equation for crack growth in a viscoelastic medium

  • A. A. Kaminskii
Article
  • 11 Downloads

Keywords

Approximate Method Viscoelastic Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. Z. Amusin and A. M. Lin'kov, “The use of vaniable moduli to solve a class of problems of Tihealheredity creep,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 6, 435–446 (1974).Google Scholar
  2. 2.
    V. T. Glushko, N. N. Dolinina, and M. I. Rozovskii, The Stability of Underground Workings [in Russian], Naukova Dumka, Kiev (1973).Google Scholar
  3. 3.
    A. A. Kaminskii, “Slow crack growth in viscoelastic bodies,” Dop. Akad. Nauk UkrSSR, Ser. A, No. 5, 424–427 (1975).Google Scholar
  4. 4.
    A. A. Kaminskii, “Kinetics of crack propagation in a viscoelastic orthotropic plate,” Dop. Akad. Nauk UkrSSR, Ser. A, No. 12, 1098–1101 (1975).Google Scholar
  5. 5.
    A. A. Kaminskii, “Investigation of crack propagation in a viscoelastic anisotropic plate,” Prikl. Mekh.12, No. 6, 76–84 (1976).Google Scholar
  6. 6.
    A. A. Kaminskii, “Kinetics of crack propagation in a viscoelastic plate of arbitrary shape,” Dop. Akad. Nauk UkrSSR, Ser. A, No. 6, 534–539 (1977).Google Scholar
  7. 7.
    A. A. Kaminskii and A. V. Gorelik, “Kinetics of crack growth in a viscoelastic medium,” Prikl. Mekh.,12, No. 5, 91–102 (1976).Google Scholar
  8. 8.
    A. D. Kovalenko and A. A. Kil'chinskii, “The method of variable moduli in problems of linear creep,” Prikl. Mekh.,6, No. 12, 27–34 (1970).Google Scholar
  9. 9.
    V. V. Kostrov, L. V. Nikitin, and L. M. Flitman, “Crack propagation in viscoelastic bodies,” Izv. Akad. Nauk SSSR, Fiz. Zemli No. 7, 20–35 (1970).Google Scholar
  10. 10.
    V. I. Krylov, V. V. Lunin, and L. L. Yanovich, Tables for Numerical Integration of Functions with Power Singularities\(\int\limits_0^1 {(1 - x)^\alpha x^\beta f(x)dx} \) [in Russian], Minsk (1963).Google Scholar
  11. 11.
    V. Z. Parton and E. M. Morozov, Mechanics of Elastoplastic Fracture [in Russian], Nauka, Moscow (1974).Google Scholar
  12. 12.
    Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Nauka, Moscow (1966).Google Scholar
  13. 13.
    G. N. Savin and A. A. Kaminskii, “A model for the rupture of viscoelastic media,” Prikl. Mekh.,7, No. 9, 1–12 (1971).Google Scholar
  14. 14.
    R. A. Schapery, “A method of viscoelastic stress analysis using elastic solutions,” J. Franklin Inst.,279, 268–289 (1965).Google Scholar
  15. 15.
    M. P. Wnuk, “Subcritical growth of fracture (inelastic fatigue),” Intem. J. Frac. Mech.,7, No. 4, 383–407 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • A. A. Kaminskii

There are no affiliations available

Personalised recommendations