Applied physics

, Volume 3, Issue 3, pp 179–188 | Cite as

The transient response of a dielectric layer

  • K. J. Langenberg
Contributed Papers

Abstract

The transient response of an atmospheric surface duct will be studied when the distance between receiving and transmitting end is arbitrarily chosen. The duct model used is that of Kahan and Eckart, consisting of a layer of relative permittivity ε1 overlying an infinitely conducting plane earth. At heighth, this permittivity decreases discontinuously to the value ε2. The source of the electromagnetic field is assumed to be a vertical magnetic dipole at the height ξ (ξ<h) above the surface of the earth with arbitrary time varying moment. The application of two integral transforms to the wave equation for the Fitzgerald vector — a Laplace transform in time and a two-dimensional Fourier transform in the horizontal coordinates in space — leads, under consideration of initial, boundary and transition conditions, to an integral representation of the solution of the wave equation in transform space. A series expansion with respect to the images of the primary source permits us to extend a method of Cagniard, de Hoop and Frankena to the case where the position of the source is in the medium of greater permittivity. Thus we get the step-function solution of the problem as an infinite sum of definite integrals over finite intervals by distinguishing between cases where the distance between receiving and transmitting end is greater or less than the total reflection distance. Thus we can give a physically intuitive description of the pulse propagation in a dielectric layer.

Index Headings

Transient response Dielectric layer Tropospheric propagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.E. Kerr:Propagation of Shrot Rado Waves (Dover Publications, New York 1951)Google Scholar
  2. 2.
    K. Brocks, G. Fengler, H. Jeske: Berichte des Instituts für Radiometereologie und Maritime Metereologie der Universität Hamburg 7 (1963)Google Scholar
  3. 3.
    T. Kahan, G. Eckart: Ann. Physique5, 641 (1950)MathSciNetGoogle Scholar
  4. 4.
    A. Sommerfeld: Ann. Physik28, 665 (1909)ADSGoogle Scholar
  5. 5.
    E. Gerjouy: Comm. Pure Appl. Math.VI, 73 (1953)Google Scholar
  6. 6.
    H. Jeffreys: Proc. Cambr. Phil. Soc.23, 472 (1926)Google Scholar
  7. 7.
    M. Muskat: Physics4, 14 (1933)CrossRefGoogle Scholar
  8. 8.
    H. Ott: Ann. Physik41, 443 (1942)ADSMathSciNetGoogle Scholar
  9. 9.
    K.O. Friedrichs, J.B. Keller: J. Appl. Phys.26, 961 (1955)CrossRefMathSciNetGoogle Scholar
  10. 10.
    F.G. Friedlander:Sound Pulses (Cambridge Univeristy Press, Cambridge 1958)MATHGoogle Scholar
  11. 11.
    H. Poritsky: Brit. J. Appl. Phys.6, 421 (1955)CrossRefADSGoogle Scholar
  12. 12.
    H. Weyl: Ann. Physik 481 (1919)Google Scholar
  13. 13.
    B. van der Pol: Trans. IREAP 4, 288 (1956)Google Scholar
  14. 14.
    C.L. Pekeris, Z. Altermann: J. Appl. Phys.28, 1317 (1957)CrossRefGoogle Scholar
  15. 15.
    A.T. de Hoop, H.J. Frankena: Appl. Scient. Res.B 8, 369 (1960)Google Scholar
  16. 16.
    H.J. Frankena: Appl. Scient. Res.8 8, 357 (1960)MathSciNetGoogle Scholar
  17. 17.
    H. Bremmer: In:Electromagnetic Waves, ed. by R.E. Langer (Univ. of Wisconsin 1961)Google Scholar
  18. 18.
    N.J. Vlaar: Appl. Scient. Res.B 10, 353 (1963)Google Scholar
  19. 19.
    N.J. Vlaar: Appl. Scient. Res.B 11, 49 (1964)CrossRefGoogle Scholar
  20. 20.
    A.T. de Hoop: Appl. Scient. Res.B 8, 349 (1959)CrossRefGoogle Scholar
  21. 21.
    C.L. Pekeris, H. Lifson: J. Acoust. Soc. Amer.29, 1233 (1957)CrossRefMathSciNetGoogle Scholar
  22. 22.
    C.L. Pekeris: Proc. Nat. Acad. Sci.41, 629 (1955)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    C.L. Pekeris: Proc. Nat. Acad. Sci.41, 469 (1955)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    N.J. Vlaar: Appl. Scient. Res.B 11, 67 (1964)CrossRefGoogle Scholar
  25. 25.
    L. Cagniard:Réflexion et Réfraction des Ondes Séismiques Progressives (Gauthier-Villard, Paris 1939)Google Scholar
  26. 26.
    C.L. Pekeris: Proc. Nat. Acad. Sci.42, 439 (1956)CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    C.L. Pekeris, I.M. Longman: J. Acoust. Soc. Amer.30, 323 (1958)CrossRefMathSciNetGoogle Scholar
  28. 28.
    C.L. Pekeris: Geol. Soc. Amer.27, 43 (1948)Google Scholar
  29. 29.
    K.J. Langenberg: Conf. Publ. No. 70, AGARD/EPC Symposium on Tropospheric Radio Wave Propagation (1970)Google Scholar
  30. 30.
    K.J. Langenberg:Die Ausbreitung eines elektromagnetischen Impulses in einem atmosphärischen Bodenwellenleiter (Dissertation. Universität d. Saarlandes, Fed. Rep. Germany 1972)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • K. J. Langenberg
    • 1
  1. 1.Fachrichtung ElektrotechnikUniversität des SaarlandesSaarbrückenFed. Rep. Germany

Personalised recommendations