Soviet Applied Mechanics

, Volume 17, Issue 3, pp 229–233 | Cite as

Numerical solution of a thermoelastic problem for an infinite body with a spherical cavity

  • V. G. Gribanov
  • N. G. Panichkin


Spherical Cavity Thermoelastic Problem Infinite Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. Boley and J. Weiner, Theory of Thermal Stresses [Russian translation], Mir, Moscow (1964).Google Scholar
  2. 2.
    O. Zenkevich, Finite-Element Method in Engineering [Russian translation], Mir, Moscow (1975).Google Scholar
  3. 3.
    V. Novatskii, Theory of Elasticity [Russian translation], Mir, Moscow (1975).Google Scholar
  4. 4.
    G. Parkus, Transient Thermal Stresses, Fizmatgiz, Moscow (1963).Google Scholar
  5. 5.
    O. W. Dillon, “Thermoelasticity when the material coupling parameter equals unity,” Trans. ASME, Ser. E,32, No. 2, 378–382 (1965).Google Scholar
  6. 6.
    R. E. Nickell and J. L. Sackman, “Approximate solutions in linear, coupled thermoelasticity,” J. Appl. Mech., Ser. E.,35, No. 2, 255–266 (1968).Google Scholar
  7. 7.
    E. Sternberg and J. G. Chakravorty, “Thermal shock in an elastic body with a spherical cavity,” Q. Appl. Math.,17, No. 2, 205–218 (1959).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • V. G. Gribanov
  • N. G. Panichkin

There are no affiliations available

Personalised recommendations