Soviet Applied Mechanics

, Volume 14, Issue 10, pp 1039–1043 | Cite as

Variational principle for nonsteady multicomponent continuum system

  • O. S. Limarchenko


Variational Principle Continuum System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. Goldstein, Classical Mechanics [in Russian], Nauka, Moscow (1975).Google Scholar
  2. 2.
    A. A. Il'yushin, Mechanics of Continuous Media [in Russian], Moscow State Univ. (1971).Google Scholar
  3. 3.
    N. A. Kil'chevskii, Course of Theoretical Mechanics [in Russian], Vol. 2, Nauka, Moscow (1977).Google Scholar
  4. 4.
    N. A. Kil'chevskii, N. E. Tkachenko, and L. M. Shal'da, “Problems of the analytic mechanics of semiaggregate systems,” in: Nonlinear and Thermal Effects in Transient Wave Processes [in Russian], Proceedings of a Symposium, Vol. 1, Gorki (1973), pp. 211–234.Google Scholar
  5. 5.
    M. O. Kil'chevskii, G. D. Nechiporenko, and L. M. Shal'da, Principles of Analytic Mechanics [in Ukrainian], Naukova Dumka, Kiev (1975).Google Scholar
  6. 6.
    J. W. Leech, Classical Mechanics, Chapman and Hall, London (1965).Google Scholar
  7. 7.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases [in Russian], Nauka, Moscow (1973).Google Scholar
  8. 8.
    V. V. Rumyantsev, “Some variational principles in the mechanics of continuous media,” Prikl. Mat. Mekh.,36, No. 6, 963–973 (1973).Google Scholar
  9. 9.
    L. I. Sedov, Foundations of the Non-Linear Mechanics of Continua, Pergamon (1965).Google Scholar
  10. 10.
    S. P. Timoshenko, Theory of Elasticity, McGraw-Hill (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • O. S. Limarchenko

There are no affiliations available

Personalised recommendations