Soviet Applied Mechanics

, Volume 17, Issue 11, pp 1011–1017 | Cite as

Stress concentration next to thin-walled linear inclusions

  • G. T. Sulim
Article

Keywords

Stress Concentration Linear Inclusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    D. V. Grilitskii and G. T. Sulim, “Periodic problem for an elastic plane with thin-walled inclusions”, Prikl. Mat. Mekh.,39, No. 3, 520–529 (1975).Google Scholar
  2. 2.
    D. V. Grilitskii and G. T. Sulim, “Elastic stresses in planes with a thin-walled inclusion”, Mat. Metod. Fiz-Mekh. Polya, No. 1, 41–48 (1975).Google Scholar
  3. 3.
    N. I. Muskhelishvili, Certain Fundamental Problems of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).Google Scholar
  4. 4.
    N. I. Muskhelishvili, Singular Integral Equations [in Russian], Nauka, Moscow (1968).Google Scholar
  5. 5.
    V. V. Panasyuk, L. T. Berezhnitskii, and V. M. Sadivskii, “Stress coefficients and stress distribution around acute-angled elastic inclusions”, Dokl. Akad. Nauk SSSR,232, No. 2, 304–307 (1977).Google Scholar
  6. 6.
    V. V. Panasyuk, M. P. Savruk and A. P. Datsyshin, Stress Distribution Around Cracks in Plates and Shells [in Russian], Naukova Dumka, Kiev (1976).Google Scholar
  7. 7.
    G. T. Sulim, “Regularity of certain systems of linear algebraic equations”, Visn. L'viv. Univ. Ser. Mekh.-Mat., No. 10, 76–79 (1975).Google Scholar
  8. 8.
    G. Erdogan and G. D. Gupta, “Stresses near a flat inclusion in bounded dissimilar material”, Int. J. Solids Struct.,8, No. 4, 533–547 (1972).Google Scholar
  9. 9.
    G. C. Sih, “Plane extension of rigidly embedded line inclusions”, Dev. Mech.,3, Pt. 1, Solid Mech. Mater., 61–79 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • G. T. Sulim

There are no affiliations available

Personalised recommendations