Advertisement

Soviet Applied Mechanics

, Volume 24, Issue 2, pp 101–106 | Cite as

Vibrations of a regularly laminar body with cylindrical interfacial surfaces

  • N. A. Shul'ga
  • A. P. Vishtak
Article
  • 13 Downloads

Keywords

Interfacial Surface Laminar Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. P. Vishtak, “Radial vibrations of a regularly laminar hollow cylinder,” in: Strength of Materials and Theory of Structures [in Russian], No. 41, 55–60 (1982).Google Scholar
  2. 2.
    A. P. Vishtak, “Forced vibrations of a piecewise-inhomogeneous medium of regular type with a cylindrical cavity,” Prikl. Mekh.,18, No. 3, 122–125 (1982).Google Scholar
  3. 3.
    A. P. Vishtak and N. A. Shul'ga, “Thickness vibrations of regularly laminar plates,” Prikl. Mekh.,19, No. 11, 122–124 (1983).Google Scholar
  4. 4.
    A. N. Guz', V. D. Kubenko, and M. A. Cherevko, Diffraction of Elastic Waves [in Russian], Naukova Dumka, Kiev (1978).Google Scholar
  5. 5.
    G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, 2nd Ed., McGraw-Hill (1968).Google Scholar
  6. 6.
    N. A. Shul'ga and A. P. Vishtak, “Plane vibrations of a medium from alternating cylindrical layers forming a cylindrical cavity,” Dokl. Akad. Nauk UkrSSR, Ser. A, No. 3, 40–43 (1981).Google Scholar
  7. 7.
    N. A. Shul'ga, “On a solution of a mechanics problem for periodic structures,” Dopov Akad. Nauk URSR, Ser. A., No. 11, 1055–1058 (1971).Google Scholar
  8. 8.
    N. A. Shul'ga, “One-dimensional strain of a semi-infinite medium with piecewise constant periodic characteristics subjected to a vibrational load,” Dokl. Akad. Nauk UkrSSR, Ser. A., No. 9, 736–739 (1979).Google Scholar
  9. 9.
    N. A. Shul'ga, Principles of the Mechanics of Laminar Media of Periodic Structure [in Russian], Naukova Dumka, Kiev (1981).Google Scholar
  10. 10.
    N. Ahmed, “Axisymmetric plane-strain vibrations of a thick-layered orthotropic cylindrical shell,” J. Acoust. Soc. Am.,40, No. 6, 1509–1516 (1966).Google Scholar
  11. 11.
    A. E. Armenakas, “Propagation of harmonic waves in composite circular cylindrical shells. I. Theoretical investigation,” AIAA J.,5, No. 4, 740–744 (1967).Google Scholar
  12. 12.
    A. E. Armenakas, “Propagation of harmonic waves in composite circular cylindrical shells. II. numerical analysis,” AIAA J.,9, No. 4, 599–605 (1971).Google Scholar
  13. 13.
    T. Karlsson and R. E. Ball, “Exact plane strain vibrations of composite hollow cylinders; comparison with approximate theories,” AIAA J.,4, No. 1, 179–185 (1966).Google Scholar
  14. 14.
    H. E. Keck and A. E. Armenakas, “Wave propagation in transversely isotropic layered cylinders,” J. Eng. Mech., Proc. ACE,97, EM-2, 541–558 (1971).Google Scholar
  15. 15.
    H. E. Keck and A. E. Armenakas, “Dispersion of axially symmetric waves in three-layered elastic shells,” J. Acoust. Soc. Am.,49, No. 5, 1511–1520 (1971).Google Scholar
  16. 16.
    R. Subramanian, “Vibrations of a composite orthotropic cylinder,” J. Sci. Eng. Res.12, Pt. 1, 139–146 (1968).Google Scholar
  17. 17.
    J. S. Whittier and J. P. Jones, “Axially symmetric wave propagation in a two-layered cylinder,” Int. J. Solids Struct.,3, No. 4, 657–677 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • N. A. Shul'ga
  • A. P. Vishtak

There are no affiliations available

Personalised recommendations