Advertisement

Applied physics

, Volume 6, Issue 2, pp 249–256 | Cite as

Positron annihilation in copper: Ak-space analysis

  • D. G. Lock
  • R. N. West
Contributed Papers

Abstract

A new approach to the analysis of positron-annihilation long-slit angular distributions which can provide a more direct reflection of Fermi surface profile has been described in a recent publication. The analysis involves the periodic superposition of angular distributions which has the effect of converting a momentum distribution into a distribution in reduced Bloch wave vectorsk. When applied to data for a Cu crystal, having the resolved momentum component parallel to the [110] direction, the analysis results in excellent agreement with the computed surface of Halse and also provides a guide to the form and intensity of the angular distribution for core electron annihilation.

A similar treatment of the results for a [100] orientation, at first sight, appears less encouraging. However, a more careful appraisal supports the general value of the approach, the validity of the analysis for the [110] crystal orientation, and gives further clues to the form and anisotropy of the core distributions for Cu single crystals.

Index Headings

Positron Copper 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.T.Stewart: InPositron Annihilation, ed. by A. T. Stewart L. O. Roellig (Academic Press, New York 1967) p. 17Google Scholar
  2. 2.
    R.N.West: Advanc. Phys.22, 263 (1973)CrossRefADSGoogle Scholar
  3. 3.
    D.Schoenberg: InThe Physics of Metals, Vol. 1, ded. by J. M. Ziman (C.U.P. Cambridge 1969) p. 62Google Scholar
  4. 4.
    D.Ll.Williams, E.H.Becker, P.Petjevich, G.Jones: Phys. Rev. Letters20, 448 (1968)CrossRefADSGoogle Scholar
  5. 5.
    D.G.Lock, V.H.C.Crisp, R.N.West: J. Phys. F. (Metal Phys.)3, 561 (1973)CrossRefADSGoogle Scholar
  6. 6.
    M.R.Halse: Phil. Trans. Roy. Soc.265, 507 (1969)CrossRefADSGoogle Scholar
  7. 7.
    J.C.Slater:Quantum Theory of Molecules and Solids (McGraw-Hill, New York 1965) Vol. 2zbMATHGoogle Scholar
  8. 8.
    S.Berko, J.S.Plaskett: Phys. Rev.112, 1877 (1958)CrossRefADSGoogle Scholar
  9. 9.
    A.G.Gould, R.N.West, B.G.Hogg: Canad. J. Phys.50, 2294 (1972)ADSGoogle Scholar
  10. 10.
    W.Jones, N.H.March:Theoretical Solid State Physics (Wiley, London 1973) Vol. 1Google Scholar
  11. 11.
    P.Mijnarends: Physica63, 235 (1973)CrossRefADSGoogle Scholar
  12. 12.
    M.H.Cohen, V.Heine: InSolid State Physics, Vol. 24, ed. by F.Seitz, D.Turnbull (Gordon and Breech, New York 1970)Google Scholar
  13. 13.
    J.J.Donaghy, A.T.Stewart: Phys. Rev.164, 396 (1967)CrossRefADSGoogle Scholar
  14. 14.
    B.B.J.Hede, J.P.Carbotte: J. Phys. Chem. Solids33, 727 (1962)CrossRefGoogle Scholar
  15. 15.
    J.P.Carbotte, A.Salvadori: Phys. Rev.162, 290 (1967)CrossRefADSGoogle Scholar
  16. 16.
    S.Kahana: Phys. Rev.129, 1622 (1963)CrossRefADSGoogle Scholar
  17. 17.
    K.Fujiwara, T.Hyodo, J.Ohyama: J. Phys. Soc. Japan33, 1047 (1972)ADSGoogle Scholar
  18. 18.
    K.Fujiwara, T.Hyodo: J. Phys. Soc. Japan35, 1664 (1973)ADSCrossRefGoogle Scholar
  19. 19.
    E.M.D.Senicki, E.H.Becker, A.G.Gould, B.G.Hogg: Phys. Letters41A, 293 (1972).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • D. G. Lock
    • 1
  • R. N. West
    • 1
  1. 1.School of Mathematics and PhysicsUniversity of East AngliaNorwichEngland

Personalised recommendations