Advertisement

Applied physics

, Volume 6, Issue 2, pp 207–213 | Cite as

Exact models for predicting picture signals in adaptive DPCM-transmission

  • Ferdinand Arp
Contributed Papers

Abstract

Exact adjustment of the prediction network of an adpative DPCM-coder for transmission of picture signals is outlined. The usual criterion is minimization of power of coded picture signal. The theory itself is not presented, but there are discussed some special and simple solutions. They are valid if correlation of the picture content is exponentially decaying in space with respect to the horizontal and vertical directions as well as in time. The full history of the picture signal is considered for optimum prediction. If considering only the spatial part of correlation, the result is a modified planar prediction which uses only three samples in the present field. Including temporal correlation, only seven planar samples from the present and the previous field are needed for complete decorrelation of differential signal. The amplitudes of these samples, fed into the prediction network, and results for the optimum minimized differential signal are discussed with respect to well-known criteria.

Index Headings

Linear prediction Picture coding DPCM-transmission Bandwidth-reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Schwartz, W. R. Bennet, S. Stein:Communication Systems and Techniques (McGraw-Hill Book Company, New York 1966) pp. 259–271Google Scholar
  2. 2.
    K. Steinbuch:Taschenbuch der Nachrichtenverarbeitung (Springer-Verlag, Berlin, Heidelberg, New York 1962) pp. 919–920Google Scholar
  3. 3.
    N. WienerExtrapolation, Interpolation and Smoothing of Stationary Time Series (M.I.T. Press, Cambridge, Mass. 1949)MATHGoogle Scholar
  4. 4.
    N. Wiener:Cybernetics or Control and Communication in the Animal and the Machine (M.I.T. Press, Cambridge, Mass. 1961) pp. 89–92MATHGoogle Scholar
  5. 5.
    A. Papoulis:Probability, Random Variables, and Stochastic Processes, (McGraw-Hill Book Company, New York 1965)MATHGoogle Scholar
  6. 6.
    J. B. O'Neal, Jr.: Bell Syst. Tech. J.45, 689 (1966)Google Scholar
  7. 7.
    A. Habibi: IEEE Trans. COM-19, 948 (1971)CrossRefGoogle Scholar
  8. 8.
    C.W. Harrison: Bell Syst. Tech. J.31, 764 (1952)Google Scholar
  9. 9.
    R. E. Graham: IRE Wescon Convention Record2 Pt. 4, 147 (1958)CrossRefGoogle Scholar
  10. 10.
    D. J. Connor, R. C. Brainard, J. O. Limb: Proc. IEEE60, 779 (1972)CrossRefGoogle Scholar
  11. 11.
    J. C. Candy, R. H. Bosworth: Bell Syst. Tech. J.51, 1495 (1972)Google Scholar
  12. 12.
    H. Schönfelder: Funkschau45, 543 (1973)Google Scholar
  13. 13.
    H. Schönfelder: Funkschau45, 591 (1973)Google Scholar
  14. 14.
    F. Arp: Arch. Elektron. Übertr. (Electronics and Communication)25, 143 (1971)Google Scholar
  15. 15.
    E. R. Kretzmer: Bell Syst. Tech. J.31, 751 (1952)Google Scholar
  16. 16.
    N. G. Deriugin: Telecommunications7, 1 (1957)Google Scholar
  17. 17.
    E. Z. Soroka: Telecommunications and Radio Engineering19 Pt. I, 63 (1965)Google Scholar
  18. 18.
    F. Arp: Arch. Elektr. Übertr.23, 187 (1969)Google Scholar
  19. 19.
    F. Arp: Arch. Elektr. Übertr.24, 447 (1970)Google Scholar
  20. 20.
    B. Wendland, F. May: Elektronische Rundschau27, 12 (1973)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Ferdinand Arp
    • 1
  1. 1.Institut für Angewandte PhysikUniversität KielKiel 1Fed. Rep. Germany

Personalised recommendations