Soviet Applied Mechanics

, Volume 14, Issue 8, pp 820–825 | Cite as

Free vibrations of orthotropic shells of revolution with variable parameters

  • E. I. Bespalova
  • Ya. M. Grigorenko
  • A. B. Kitaigorodskii
  • A. I. Shinkar'


Variable Parameter Free Vibration Orthotropic Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    É. I. Grigolyuk, V. P. Mal'tsev, V. I. Myachenkov, and A. N. Frolov, “On a method for solving stability and vibration problems of shells of revolution,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 1, 9–19 (1971).Google Scholar
  2. 2.
    É. I. Grigolyuk, V. I. Mamai, and A. N. Frolov, “Study of the stability of nonshallow spherical shells under finite displacements, based on various equations of shell theory,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5, 154–165 (1972).Google Scholar
  3. 3.
    Ya. M. Grigorenko, Isotropic and Anisotropic Laminated Shells of Revolution of Variable Stiffness [in Russian], Naukova Dumka, Kiev (1973).Google Scholar
  4. 4.
    V. L. Ingul'tsov, “Stability and natural vibrations of smooth and reinforced noncircular cylindrical shells,” in: Theory of Shells and Plates, [in Russian], Sudostroenie, Leningrad (1975), pp. 182–184.Google Scholar
  5. 5.
    A. V. Karmishin, V. A. Lyaskovets, V. I. Myachenkov, and A. N. Frolov, Statics and Dynamics of Thin-Walled Shell Structures [in Russian], Mashinostroenie, Moscow (1975).Google Scholar
  6. 6.
    A. I. Likhoded and A. A. Malinin, “Vibrations of cylindrical shells of variable thickness and rigidity,” Prikl. Mekh.,7, No. 6, 43–48 (1971).Google Scholar
  7. 7.
    A. A. Malinin, “Natural vibrations of shells of revolution of variable thickness with additional masses,” Prikl. Mekh.,9, No. 3, 56–60 (1973).Google Scholar
  8. 8.
    V. I. Myachenkov and A. A. Repin, “Effect of boundary conditions on the eigenfrequencies of the vibrations of cylindrical shells,” Prikl. Mekh.,7, No. 6, 31–36 (1971).Google Scholar
  9. 9.
    A. P. Filippov, Vibrations of Deformable Systems [in Russian], Mashinostroenie, Moscow (1970).Google Scholar
  10. 10.
    S. B. Filippov, “Axisymmetric vibrations of coupled shells,” in: Theory of Shells and Plates [in Russian], Sudostroenie, Leningrad (1975), pp. 230–233.Google Scholar
  11. 11.
    A. S. Khristenko, “Natural vibrations of orthotropic and isotropic cylindrical shells with localized masses,” in: Shipbuilding and Naval Installations [in Russian], No. 17, Khar'kovsk. Gos. Univ., Khar'kov (1971), pp. 36–43.Google Scholar
  12. 12.
    Ya. M. Grigorenko, E. I. Bespalova, A. T. Vasilenko, et al., Numerical Solution of Boundary-Value Problems of the Statics of Orthotropic Laminated Shells of Revolution on an M-220 Digital Computer [in Russian], Naukova Dumka, Kiev (1971).Google Scholar
  13. 13.
    A. I. Shinkar', A. B. Kitaigorodskii, and S. K. Borshchevskaya, “Calculation of eigenvalues for systems of ordinary linear differential equations,” in: Algorithms and Programs for Solving Problems of the Mechanics of a Deformable Solid [in Russian], Naukova Dumka, Kiev (1976), pp. 157–169.Google Scholar
  14. 14.
    J. Hamel, “Axisymmetric membrane and flexural vibrations of a spherical shell,” Mech. Res. Comm.,3, 113–118 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • E. I. Bespalova
  • Ya. M. Grigorenko
  • A. B. Kitaigorodskii
  • A. I. Shinkar'

There are no affiliations available

Personalised recommendations