Applied physics

, Volume 6, Issue 1, pp 89–92 | Cite as

Electric breakdown of barium titanate: A model

  • Klaus D. Schomann
Contributed Papers

Abstract

A model is proposed to explain observations on electric breakdown of BaTiO3 ceramics: Ceramics made by usual sintering technique contains TiO2-rich intermediate layers between the grains of the polycrystalline structure. Field inhomogeneities are shown to result, with the field enhanced by factors of up to 100 or more in places. The very high field strength ensueing when the applied test voltage approaches its breakdown value causes inner field emission, with currents abruptly rising to very high values and thermally destroying the sample at once.

Index Headings

Electric breakdown Barium titanate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. A. Konorova, V. V. Krasnopevtsev, G. I. Skanavi: Bull. Acad. Sci. USSR — Phys. Series22, 410 (1958)Google Scholar
  2. 2.
    P. H. Fang, W. S. Brower: Phys. Rev.113, 456 (1959)CrossRefADSGoogle Scholar
  3. 3.
    S. V. Bogdanov: Sov. Phys. — Solid State4, 1596 (1963)Google Scholar
  4. 4.
    I. Ueda, M. Takiuchi, S. Ikegami, H. Sato: J. Phys. Soc. Japan19, 1267 (1964)ADSCrossRefGoogle Scholar
  5. 5.
    K. D. Schomann: Thesis Univ. Karlsruhe (1974)Google Scholar
  6. 6.
    K. D. Schomann, to be publishedGoogle Scholar
  7. 7.
    J. J. O'Dwyer:The Theory of Dielectric Breakdown of Solids (Clarendon Press, Oxford 1964)Google Scholar
  8. 8.
    J. J. O'Dwyer: J. Phys. Chem. Solids28, 1137 (1967)CrossRefADSGoogle Scholar
  9. 9.
    H. S. Carslaw, J. C. Jaeger:Heat Conduction in Solids, 2nd ed. (Clarendon Press, Oxford 1959) Chap. 10Google Scholar
  10. 10.
    Y. Inuishi, S. Uematsu: J. Phys. Soc. Japan13, 761 (1958)CrossRefADSGoogle Scholar
  11. 11.
    A. Branwood, J. D. Hurd, R. H. Tredgold: Brit. J. Appl. Phys.13, 528 (1962)CrossRefADSGoogle Scholar
  12. 12.
    K. Kawabe, S. Uematsu, Y. Inuishi: Electrical Engg. Japan84, 45 (1964)Google Scholar
  13. 13.
    C. T. Morse, G. J. Hill: Proc. Brit. Ceram. Soc.18, 23 (1970)Google Scholar
  14. 14.
    R. Gerson, T. C. Marshall: J. Appl. Phys.30, 1650 (1959)CrossRefADSGoogle Scholar
  15. 15.
    H. C. Graham, N. M. Tallan, K. S. Mazdyasni: J. Am. Ceram. Soc.54, 548 (1971)CrossRefGoogle Scholar
  16. 16.
    H. Rehme: Z. Angew. Phys.29, 173 (1970)Google Scholar
  17. 17.
    D. E. Rase, R. Roy: J. Am. Ceram. Soc.38, 102 (1955)CrossRefGoogle Scholar
  18. 18.
    H. Sachse:Ferroelektrika (Springer-Verlag Berlin, Göttingen, Heidelberg 1956) p. 27Google Scholar
  19. 19.
    B. Hoffmann: Solid State Electr.16, 623 (1973)CrossRefADSGoogle Scholar
  20. 20.
    W. Heywang: Solid State Electr.3, 51 (1961)CrossRefADSGoogle Scholar
  21. 21.
    W. Schottky: Z. Physik14, 77 (1923)CrossRefGoogle Scholar
  22. 22.
    W. Franz: InHandbuch der Physik, Vol. XVII (Springer-Verlag Berlin, Göttingen, Heidelberg 1956) pp. 242Google Scholar
  23. 23.
    W. Franz: InHandbuch der Physik, Vol. XVII (Springer-Verlag Berlin, Göttingen, Heidelberg 1956) p. 217Google Scholar
  24. 24.
    W. Franz: InHandbuch der Physik, Vol. XVII (Springer-Verlag Berlin, Göttingen, Heidelberg 1956) pp. 244Google Scholar
  25. 25.
    P. Schulz:Elektronische Vorgänge in Gasen und Festkörpern (G. Braun, Karlsruhe 1968) p. 403Google Scholar
  26. 26.
    K. H. Härdtl: J. Am. Ceram. Soc. Bull. (to be published)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Klaus D. Schomann
    • 1
  1. 1.Institut für Technologie der ElektrotechnikUniversität Karlsruhe (TH)KarlsruheFed. Rep. Germany
  2. 2.LudwigshafenFed. Rep. Germany

Personalised recommendations