, Volume 1, Issue 1, pp 85–94 | Cite as

Medical diagnostics with nonparametric allocation rules

  • Norbert Victor


Some nonparametric allocation methods are proposed for use in computer-aided medical diagnostics. It may be expected that the replacement of the widely employed parametric models by these methods leads to more realistic results, because the assumptions which are used by parametric models and which are never fulfilled in practice become unnecessary. The overestimation of the discriminating power arising from the non-fulfillment of parametric assumptions are avoided.

Key words

Computer-aided diagnostics Nonparametric allocation rules Direct density estimation Kernel methods Nearest neighbour rules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aitchison, J., and Aitken, C.G.G., ‘Multivariate Binary Discrimination by the Kernel Method’,Biometrika 63, (1976) 413–420.Google Scholar
  2. [2]
    Fix, E. and Hodges, J.L.Jr., ‘Nonparametric Discrimination: Consistency Properties”, U.S. Air Force School of Aviation Med., Project No. 21-49-004, Report No. 4, (1951).Google Scholar
  3. [3]
    Glick, N., ‘Sample-Based Classification Procedures Derived from Density Estimators’,J. Amer. Statist. Assoc. 67, (1972) 116–122.Google Scholar
  4. [4]
    Goldstein, M., ‘Comparison of Some Density Estimate Classification Procedures’,J. Amer. Statist. Assoc. 70, (1975) 666–669.Google Scholar
  5. [5]
    Habbema, J.D.F., Hermans, J., and Van den Broek, K., ‘A Stepwise Discriminant Analysis Program Using Density Estimation’. In Bruckmann, G., Ferschl, F., and Schmetterer, L. (eds),COMPSTAT 1974, Physica-Verlag, Wien, 1974, pp. 101–110.Google Scholar
  6. [6]
    Hermans, J., and Habbema, J.D.F., ‘Comparison of Five Methods to Estimate Posterior Probabilities’,EDV in Med. u. Biol. 6, (1975) 14–19.Google Scholar
  7. [7]
    Parzen, E., ‘On Estimation of a Probability Density Function and Mode’,Ann. Math. Statist. 33, (1962) 1065–1076.Google Scholar
  8. [8]
    Patrick, E. A., Stelmack, F. P., and Shen, L. Y. L., ‘Review of Pattern Recognition in Medical Diagnosis and Consulting, Relative to New System Model’,IEEE Trans. Systems, Man and Cybernet., SMC-4, (1974) 1–16.Google Scholar
  9. [9]
    Rosenblatt, M., ‘Remarks on Some Nonparametric Estimates of a Density Function’,Ann. Math. Statist. 27, (1956) 832–835.Google Scholar
  10. [10]
    Victor, N., ‘Non-parametric Allocation Rules’. In De Dombal, F. T. and Gremy, F. (eds.),Decision Making and Medical Care, North-Holland Publ. Comp., Amsterdam, 1976, pp. 515–527.Google Scholar
  11. [11]
    Victor, N., ‘Alternativen zum klassischen Histogramm’,Meth. Inform. Med. 17, (1978) 120–126.Google Scholar
  12. [12]
    Wagner, T. J., ‘Nonparametric Estimates of Probability Densities’,IEEE Trans. Inform. Theory, IT-21, (1975) 438–440.Google Scholar
  13. [13]
    Wertz, W., ‘Empirische Betrachtungen und Normalapproximation bei Dichteschätzungen’,Operations Research-Verfahren 13, (1972) 430–438.Google Scholar

Copyright information

© D. Reidel Publishing Company 1980

Authors and Affiliations

  • Norbert Victor
    • 1
  1. 1.Abt. Biomathematik im FB 18Universität GiessenGiessenF.R.G.

Personalised recommendations