Soviet Applied Mechanics

, Volume 11, Issue 9, pp 949–954 | Cite as

Propagation of plane harmonic waves in an initially deformed layer made from an incompressible material

  • F. G. Makhort


Harmonic Wave Incompressible Material Plane Harmonic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. E. Greenand, J. Adkins, Large Elastic Deformations and Nonlinear Continuum Mechnics, Clarendon, Oxford (1960).Google Scholar
  2. 2.
    A. N. Guz', Stability of Elastic Bodies for Finite Deformations [in Russian], Naukova Dumka, Kiev (1973).Google Scholar
  3. 3.
    A. N. (O. M.) Guz', O. P. Zhuk, and F. G. (P. G.) Makhort, “Propagation of elastic Lamb waves in a body with initial stresses”, Dokl. Akad. Nauk UkrSSR, Ser. A, No. 10 (1972).Google Scholar
  4. 4.
    A. N. Guz' and F. G. Makhort, “Description of the effect of finite deformations on the velocity of propagation of elastic waves,” Dokl. Akad. Nauk SSSR,198, No. 2 (1971).Google Scholar
  5. 5.
    A. N. Guz', F. G. Makhort, O. I. Gushcha, and V. K. Lebedev, “Theory of wave propagation in an elastic isotropic body with initial deformations,” Prikl. Mekh.,6, No. 12 (1970).Google Scholar
  6. 6.
    M. Kozorov, A. P. Rachev, and U. G. Ivanov, “Propagation of elastic waves in a circular cylinder subject to boundary deformations. Incompressible material,” Teor. Prikl. Mekh.,3, No. 3 (1972).Google Scholar
  7. 7.
    F. G. Makhort, “Theory of the propagation of surface waves in an elastic body with initial deformation,” Prikl. Mekh.,7, N. 2 (1971).Google Scholar
  8. 8.
    F. G. Makhort. “Propagation of harmonic waves in an initially deformed cylinder made from an incompressible material,” Prikl. Mekh.,9, No. 12 (1973).Google Scholar
  9. 9.
    V. V. Novozhilov, Foundations of the Nonlinear Theory of Elasticity, Graylock Press, Rochester, New York (1953).Google Scholar
  10. 10.
    M. Hayes and R. S. Rivlin, “Propagation of a plane wave in an isotropic elastic material subjected to pure homogeneous deformation,” Arch. Rotat. Mech. Anal.,8, No. 1 (1961).Google Scholar
  11. 11.
    A. E. Green. R. S. Rivlin, and R. T. Shield, “General theory of small elastic deformations superposed on finite elastic deformations,” Proc. Roy. Soc.,211, Ser. A, No. 1104 (1952).Google Scholar
  12. 12.
    G. Z. Heng, “The problem of stability and vibration of a circular plate subject to finite initial deformation,” Arch. Mech. Stosow.,14, No. 2 (1962).Google Scholar
  13. 13.
    G. Z. Heng, “Vibration and stability of a cylinder subject to finite deformation,” Arch. Mech. Stosow.,14, No. 5 (1962).Google Scholar
  14. 14.
    J. L. Nowinski and I. A. Ismail, “Oscillations of a thick rectangular strip initially stressed by a finite biaxial compression,” Acta Mech.,2, No. 3 (1966).Google Scholar
  15. 15.
    E. S. Suhubi, “Small longitudinal vibration of an initially stretched circular cylinder,” Int. J. Eng. Sci.,2, No. 5 (1965).Google Scholar
  16. 16.
    R. N. Thurston and K. Brugger, “Third-order elastic constants and the velocity of small-amplitude elastic waves in homogeneously stressed media,” Phys. Rev.,133, No. 6A (1964).Google Scholar
  17. 17.
    R. A. Toupin and B. Berstein, “Sound waves in deformed perfectly elastic materials,” J. Acoust. Soc. Amer.,33, No. 2 (1961).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • F. G. Makhort

There are no affiliations available

Personalised recommendations