Applied physics

, Volume 14, Issue 3, pp 303–311 | Cite as

Study of non-radiative silicon deexcitation in an oxygen atmosphere using the differential measurement of the excited state lifetimes

  • J. Azencot
  • R. Goutte
Contributed Papers

Abstract

Having developed a new method of differential lifetime measurement using atomic ionoluminescence as an excitation process, we applied this method to a monocrystaline silicon sample in an oxygen atmosphere of variable pressure. We found decreased values of the experimental lifetimes concerning levels 4s 3 P 0 and 4s 1 P 0, which are more marked when the oxygen pressure increases. This tends then towards a saturation of the observed phenomenon.

We propose, in agreement with other authors, an explanation which is based on the existence of non-radiative deexcitations. We present also a mathematical model for calculating this transition effect on the lifetime measurements. We consider that it is possible to take advantage of this experimental lifetime variation to determine a parameter of the model which characterises the non-radiative deexcitations. This measuring method appears to be a simple and original procedure for the study of certain nonradiative transitions.

PACS Codes

82.65 79.20 34 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.R.Bates, A.Damgaard Phil. Trans. Roy. Soc. A242, 101 (1949)ADSGoogle Scholar
  2. 2.
    W.L.Wiese, M.W.Smith, B.M.Glennon: “Atomic Transition Probabilities” Vol. 1, NSDRS-NBS 4 (1966)Google Scholar
  3. 3.
    E.W.Foster: Rept. Progr. Phys.27, 469 (1964)CrossRefADSGoogle Scholar
  4. 4.
    C.W.Allen: “Astrophysical Quantities” 2nd ed. (The Atlone Press, London 1963)Google Scholar
  5. 5.
    A.Einstein: Z. Physik18, 121 (1917)Google Scholar
  6. 6.
    E.H.S.Burhop, W.N.Assaad: Adv. At. Mol. Phys. No. 8, (1972)Google Scholar
  7. 7.
    J.Azencot: Thèse de docteur ingénicur, Lyon 247, (1976)Google Scholar
  8. 8.
    J.F.Hennequin: J. Physique29, 1053 (1968)Google Scholar
  9. 9.
    G.Blaise, G.Slodzian: Surface Sci.40, 708 (1973)CrossRefGoogle Scholar
  10. 10.
    W.F.Van DerWeg, D.J.Bierman: Physica44, 177 (1969)CrossRefADSGoogle Scholar
  11. 11.
    I.Terzic, B.Perovic: Surface Sci.21, 86 (1970)CrossRefGoogle Scholar
  12. 12.
    R.Kelly, C.B.Kerkdijk: Surface Sci.46, 537 (1974)CrossRefGoogle Scholar
  13. 13.
    J.P.Meriaux: Thèse de docteur ès Sciences Physiques, Lyon 54 (1971)Google Scholar
  14. 14.
    J.Azencot, R.Goutte: Proc. Royal Soc. (to be published)Google Scholar
  15. 15.
    G.M.lawrence: J. Quant. Spectroscop. Radiat. Transfer.5, 359 (1965)CrossRefGoogle Scholar
  16. 16.
    R.Goutte: Thèse de doctorat ès Sciences Physiques, Lyon 246 (1959)Google Scholar
  17. 17.
    E.Regenstreif: Annales de radioélectricité. 6 (1951)Google Scholar
  18. 18.
    J.Azencot, R.Prost: L'Onde Electrique.55, 341 (1975)Google Scholar
  19. 19.
    C.W.White, D.L.Simms, N.H.Tolk, D.V.McCaughan: Surface Sci.49, 657 (1975)CrossRefGoogle Scholar
  20. 20.
    H.D.Hagstrum: Phys. Rev.96, 336 (1954)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • J. Azencot
    • 1
  • R. Goutte
    • 1
  1. 1.Laboratoire d'Optique Corpusculaire et d'UltrasonsInstitut National des Sciences Appliquées de LyonVilleurbanne CedexFrance

Personalised recommendations