Soviet Applied Mechanics

, Volume 13, Issue 2, pp 205–207 | Cite as

Application of the Bubnov-Galerkin method in the theory of stochastic systems

  • G. I. Kresin
Brief Communications


Stochastic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1968).Google Scholar
  2. 2.
    A. A. Krasovskii, “Solution of the Fokker-Planck-Kolmogorov equation for a dynamic system with analytic characteristics,” Izv. Akad. Nauk SSSR, Tekh. Kibernetika, No. 6, 200–211 (1972).Google Scholar
  3. 3.
    A. A. Krasovskii, “Iterative solution of the Kolmogorov equation and suboptimal estimations,” Dokl. Akad. Nauk SSSR,219, No. 1, 49–52 (1974).Google Scholar
  4. 4.
    S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], Nauka, Moscow (1970).Google Scholar
  5. 5.
    V. A. Nekrasov, “Multivariate distribution of ordinates in random processes accompanying the lateral roll of a ship,” Tr. Nikolaevsk. Korablestroit. Inst., No. 35, 78–88 (1970).Google Scholar
  6. 6.
    A. A. Sveshnikov, Applied Methods in the Theory of Random Functions [in Russian], Nauka, Moscow (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • G. I. Kresin

There are no affiliations available

Personalised recommendations