Journal of Automated Reasoning

, Volume 13, Issue 1, pp 83–115 | Cite as

On the termination of clause graph resolution

  • C. A. Johnson


This paper introducesextended clause graph resolution, a variant of Kowalski's clause graph resolution that is terminating at the full first-order level. This terminating variant is obtained by extending the definitions of clause graph and clause graph resolution to include more information about the interdependencies between links and clauses in the graph, by restricting purity slightly and by employing an exhaustive search of eligible links.

Key words

clause graphs resolution purity termination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, P. B. (1968): Resolution with merging,J. ACM 15, 367–381.Google Scholar
  2. Andrews, P. B. (1976): Refutations by mating,IEEE Trans. Computing C-25, 801–807.Google Scholar
  3. Andrews, P. B. (1981): Theorem proving via general mating,J. ACM 28, 193–214.CrossRefGoogle Scholar
  4. Baader, F. (1991): Unification, weak unification, upper bound, lower bound and generalization problems, inProc. Rewriting Techniques and Applications, Springer LNCS 488, 86–97.Google Scholar
  5. Bibel, W. (1980):A Strong Completeness Result for the Connection Graph Proof Procedure, Bericht ATP-3-IV-80, Institut für Informatik, Technische Univ., München.Google Scholar
  6. Bibel, W. (1981): On matrices with connections,J. ACM 28, 633–645.Google Scholar
  7. Bibel, W. (1981): On the completeness of connection graph resolution,Proc. GWAI-81, Springer Informatik Fachberichte, vol. 47, J. H. Siekmann (ed.), 246–247.Google Scholar
  8. Bibel, W. (1987):Automated Theorem Proving, Vieweg, Wiesbaden.Google Scholar
  9. Bruynooghe, M. (1975): The inheritance of links in a clause graph, Report CW2, Applied Mathematics and Programming Division, Katholieke Universiteit, Leuven.Google Scholar
  10. Davis, M. (1983): The prehistory and early history of automated deduction, in I. Siekmann and G. Wrightson (eds.),Classical Papers on Computational Logic 1957–1966, Springer, Heidelberg.Google Scholar
  11. Derschowitz, N. (1987): Termination of rewriting,J. Symbolic Computation 3, 69–116.Google Scholar
  12. Eder, E. (1985): Properties of substitutions and unifications,J. Symbolic Computation 1, 31–46.Google Scholar
  13. Eisinger, N. (1986): What you always wanted to know about clause graph resolution, inProc. 8th CADE, Springer LNCS 230, 316–336.Google Scholar
  14. Eisinger, N. (1991):Completeness, Confluence and Related Properties of Clause Graph Resolution, Pitman, London.Google Scholar
  15. Goldberg, A. (1979): Average complexity of the satisfiability problem, in W. Joyner (ed.),Proc. 4th Workshop on Automated Deduction, Austin, Texas, pp. 1–16.Google Scholar
  16. Herold, A. (1983):Some Basic Notions of First-Order Unification Theory, Internal Report 15/83, Fakultät für Informatik, Universität Karlsruhe.Google Scholar
  17. Johnson, C. (1993):On the Termination of Clause Graph Resolution, preprint.Google Scholar
  18. Knuth, D. and Bendixson, D. (1970): Simple word problems in universal algebras, in J. Leech (ed.),Computational Problems in Abstract Algebra, Pergamon Press, London, pp. 263–297.Google Scholar
  19. Kowalski, R. and Kuehner, D. (1971): Linear resolution with selection function,Artificial Intelligence 2, 227–260.Google Scholar
  20. Kowalski, R. (1975): A proof procedure using connection graphs,J. ACM 22, 572–595.Google Scholar
  21. Kowalski, R. (1979):Logic for Problem Solving, North-Holland, Amsterdam.Google Scholar
  22. Loveland, D. (1978):Automated Theorem Proving, North-Holland, Amsterdam.Google Scholar
  23. Nilsson, N. J. (1971):Problem Solving Methods in Artificial Intelligence, McGraw-Hill, New York.Google Scholar
  24. Robinson, J. (1965): A machine orientated logic based on the resolution principle,J. ACM 12, 23–41.CrossRefGoogle Scholar
  25. Robinson, J. (1969): Mechanizing higher order logic,Machine Intelligence 4, 151–170.Google Scholar
  26. Robinson, J. (1971): Computational logic: The Unification Computation,Machine Intelligence 6, 63–72.Google Scholar
  27. Noll, H. (1980): A note on resolution: How to get rid of factoring without losing completeness,Proc. 5th CADE, Springer LNCS 87, 250–263.Google Scholar
  28. Pais, J. and Peterson, G. (1991): Using forcing to prove completeness of resolution and paramodulation,J. Symbolic Computation 11, 3–19.Google Scholar
  29. Peterson, G. (1983): A technique for establishing completeness results in theorem proving with equality,SIAM J. Computing 12, 82–100.Google Scholar
  30. Shostak, R. E. (1976): Refutation graphs,Artificial Intelligence 7, 51–64.Google Scholar
  31. Shostak, R. E. (1979):A Graph Theoretic View of Resolution Theorem Proving, Report SRI Int., Menlo Park, Calif.Google Scholar
  32. Smolka, G. (1982): Completeness of the connection graph proof procedure for unit refutable clause sets,Proc. GWAI-82, Springer Informatik Fachberichte, vol. 58, pp. 191–204.Google Scholar
  33. Stephen, W. and Siekmann, J. (1978): Completeness and soundness of the connection graph proof procedure, inAISB/GI Conf. on Artificial Intelligence, D. Sleeman (ed.), Leeds Univ. Press, pp. 40–344. Full version as Int. Ber. 7/76, Institut für Informatik, Univ., Karlsruhe.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • C. A. Johnson
    • 1
  1. 1.Computer Science DepartmentUniversity of KeeleUnited Kingdom

Personalised recommendations