Journal of Automated Reasoning

, Volume 11, Issue 1, pp 83–113 | Cite as

Bounded-overhead caching for definite-clause theorem proving

  • Alberto Segre
  • Daniel Scharstein
Article

Abstract

In this paper we describe the design of an effective caching mechanism for resource-limited, definite-clause theorem-proving systems. Previous work in adapting caches for theorem proving relies on the use of unlimited-size caches. We show how unlimited-size caches are unsuitable in application contexts where resource-limited theorem provers are used to solve multiple problems from a single problem distribution. We introduce bounded-overhead caches, that is, those caches that contain at most a fixed number of entries and entail a fixed amount of overhead per lookup, and we examine cache design issues for bounded-overhead caches. Finally, we present an empirical evaluation of bounded-overhead cache performance, relying on a specially designed experimental methodology that separates hardware-dependent, implementation-dependent, and domain-dependent effects.

Key words

Machine learning caching memoization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astrachan, O. L. and Stickel, M. E., ‘Caching and lemmaizing in model elimination theorem provers’, Technical Note 513, SRI International, Menlo Park, Calif. (December 1991).Google Scholar
  2. 2.
    Dietrich, S. W., ‘Extension tables: memo relations in logic programming’,Proceedings of the Institute of Electrical and Electronics Engineers Symposium on Logic Programming, San Francisco, pp. 264–273 (1987).Google Scholar
  3. 3.
    Doyle, J., ‘Truth maintenance systems for problem solving’, Technical Report 419, MIT Artificial Intelligence Laboratory, Cambridge, Mass. (1978).Google Scholar
  4. 4.
    Ebeling, C.,All the Right Moves, MIT Press, Cambridge, Mass. (1987).Google Scholar
  5. 5.
    Elkan, C., ‘Conspiracy numbers and caching for searching and/or trees and theorem-proving’,Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, Detroit, pp. 341–346 (1989).Google Scholar
  6. 6.
    Elkan, C., ‘Incremental, approximate planning’,Proceedings of the National Conference on Artificial Intelligence, Boston, pp. 145–150 (1990).Google Scholar
  7. 7.
    Ginsberg, M. L. and Harvey, W. D., ‘Iterative broadening’,Artificial Intelligence 55(2–3), 367–383 (1992).Google Scholar
  8. 8.
    Green, C., ‘Application of theorem proving to problem solving’,Proceedings of the First International Joint Conference on Artificial Intelligence, Washington, D.C., pp. 741–747 (1969).Google Scholar
  9. 9.
    Hennessy, J. and Patterson, D.,Computer Architecture: A Quantitative Approach, Morgan Kaufmann Publishers, San Mateo, Calif. (1990).Google Scholar
  10. 10.
    Korf, R., ‘Depth-first iterative deepening: an optimal admissible tree search’,Artificial Intelligence 27(1), 97–109 (1985).Google Scholar
  11. 11.
    McAllester, D. A., ‘An outlook on truth maintenance’, Memo 551, MIT Artificial Intelligence Laboratory, Cambridge, Mass. (August 1980).Google Scholar
  12. 12.
    McAllester, D. A., ‘Reasoning utility package user's manual, version one’, Memo 667, MIT Artificial Intelligence Laboratory, Cambridge, Mass. (April 1982).Google Scholar
  13. 13.
    McDermott, D., ‘A general framework for reasong maintenance’,Artificial Intelligence 50(3), 289–330 (1991).Google Scholar
  14. 14.
    Michie, D., “‘Memo” functions and machine learning’,Nature 218, 19–22 (1968).Google Scholar
  15. 15.
    Minton, S., ‘Quantitative results concerning the utility of explanation-based learning’,Artificial Intelligence 42(2–3), 363–392 (1990).Google Scholar
  16. 16.
    Mostow, J. and Cohen, D., ‘Automating program speedup by deciding what to cache’,Proceedings of the Ninth International Joint Conference on Artificial Intelligence, Los Angeles, pp. 165–173 (1985).Google Scholar
  17. 17.
    Plaisted, D., ‘Non-Horn clause logic programming without contrapositives’,J. Automated Reasoning 4, 287–325 (1988).Google Scholar
  18. 18.
    Segre, A. M., ‘Explanation-based learning of generalized robot assembly plans’, Ph.D. Thesis, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana (1987).Google Scholar
  19. 19.
    Segre, A. M.,Machine Learning of Robot Assembly Plans, Kluwer Academic Publishers, Hingham, Mass. (1988).Google Scholar
  20. 20.
    Segre, A. M. and Elkan, C., ‘A provably complete family of EBL algorithms’, Working Paper, Department of Computer Science, Cornell University, Ithaca, N.Y. (1990).Google Scholar
  21. 21.
    Segre, A. M., Elkan, C. and Russell, A., ‘Technical note: a critical look at experimental evaluations of EBL’,Machine Learning 6(2), 183–196 (1991).Google Scholar
  22. 22.
    Segre, A. M., Elkan, C., Gordon, G. and Russell, A., ‘A robust methodology for experimental evaluations of speedup learning’, Working Paper, Department of Computer Science, Cornell University, Ithaca, N.Y. (1991).Google Scholar
  23. 23.
    Segre, A. M., ‘Learning how to plan’,Robotics and Autonomous Systems 8(1–2), 93–111 (1991).Google Scholar
  24. 24.
    Segre, A. M., Elkan, C., Scharstein, D., Gordon, G. and Russell, A., ‘Adaptive inference’, inMachine Learning: Induction, Analogy, and Discovery, S. Chipman and A. Meyrowitz (Eds.), Kluwer Academic Publishers, Hingham, Mass. (1993).Google Scholar
  25. 25.
    Segre, A. M. and Turney, J., ‘SEPIA: a resource-bounded adaptive agent’,Proceedings of the First International Conference on Artificial Intelligence Planning Systems, College Park, Maryland, pp. 303–304 (1992).Google Scholar
  26. 26.
    Segre, A. M., ‘On combining multiple speedup techniques’,Proceedings of the Ninth International Machine Learning Conference, Aberdeen, Scotland, pp. 400–405 (1992).Google Scholar
  27. 27.
    Segre, A. M. and Turney, J., ‘Planning, acting, and learning in a dynamic domain’, inMachine Learning Methods for Planning, S. Minton (Ed), Morgan Kaufmann Publishers, San Mateo, Calif. (1993).Google Scholar
  28. 28.
    Slate, D. and Atkin, L., ‘Chess 4.5 — The Northwestern University chess program’, inChess Skill in Man and Machine, P. Frey (Ed.), Springer-Verlag, pp. 82–118 (1977).Google Scholar
  29. 29.
    Sussman, G. J., ‘A computational model of skill acquisition’, Technical Report 297, MIT Artificial Intelligence Laboratory, Cambridge, Mass. (1973).Google Scholar
  30. 30.
    Tamaki, H. and Sato, T., ‘OLD resolution with tabulation’,Third International Conference on Logic Programming, London, pp. 85–97 (1986).Google Scholar
  31. 31.
    Turney, J. and Segre, A. M., ‘SEPIA: an experiment in integrated planning and improvisation’,Working Notes of the 1989 American Association for Artificial Intelligence Workshop on Planning and Search, Palo Alto, Calif., pp. 59–63 (1989).Google Scholar
  32. 32.
    Turney, J. and Segre, A. M., ‘A framework for learning in planning domains with uncertainty’, Technical Report 89-1009, Department of Computer Science, Cornell University, Itahaca, N.Y. (1989).Google Scholar
  33. 33.
    Warren, D. S., ‘Memoing for logic programs’,Communications of the Association for Computing Machinery 35(3), 94–111 (1992).Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Alberto Segre
    • 1
  • Daniel Scharstein
    • 1
  1. 1.Department of Computer ScienceCornell UniversityIthacaUSA

Personalised recommendations