Advertisement

Journal of Automated Reasoning

, Volume 10, Issue 1, pp 59–78 | Cite as

Fuzzy operator logic and fuzzy resolution

  • Thomas J. Weigert
  • Jing-Pha Tsai
  • Xuhua Liu
Article

Abstract

There have been only few attempts to extend fuzzy logic to automated theorem proving. In particular, the applicability of the resolution principle to fuzzy logic has been little examined. The approaches that have been suggested in the literature, however, have made some semantic assumptions which resulted in limitations and inflexibilities of the inference mechanism. In this paper we present a new approach to fuzzy logic and reasoning under uncertainty using the resolution principle based on a new operator, the fuzzy operator. We present the fuzzy resolution principle for this logic and show its completeness as an inference rule.

Key words

Fuzzy logic fuzzy resolution knowledge representation uncertainty reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann, R.,Introduction to Many Valued Logics, Dover, New York (1967).Google Scholar
  2. 2.
    Adams, J. B., ‘Probabilistic reasoning and certainty factors’,Math. Bios. 32, 177–186 (1976).Google Scholar
  3. 3.
    Baldwin, J. F., ‘Fuzzy logic and fuzzy reasoning’, in: E. H. Mamdani and B. R. Gaines (Eds.),Fuzzy Reasoning and its Applications, Academic Press, London (1981), pp. 133–148.Google Scholar
  4. 4.
    Baldwin, J. F., ‘Support logic programming’, A. Jones (Ed.)Fuzzy Sets, Theory, and Applications, Reidel, Dordrecht (1986).Google Scholar
  5. 5.
    Baldwin, J. F. and Monk, M., ‘SLOP — A system for support logic programming’,I.T.R.C. Research Report, Univ. of Bristol (1986).Google Scholar
  6. 6.
    Baldwin, J. F., ‘Evidential support logic programming’,Fuzzy Sets and Systems 24, 1–26 (1987).Google Scholar
  7. 7.
    Bellmann, R. and Giertz, M. ‘On the analytic formalism of the theory of fuzzy sets’,Inf. Sciences 5, 149–156 (1973).Google Scholar
  8. 8.
    Bellmann, R. and Zadeh, L. A., ‘Local and fuzzy logics’, in: J. Dunn and G. Epstein (Eds.)Modern Uses of Multiple-Valued Logics D. Reidel, Dordrecht (1977) pp. 103–165.Google Scholar
  9. 9.
    Bundy, A., ‘Incidence calculus: a mechanism for probabilistic reasoning’,J. Autom. Reasoning 1, 263–283 (1985).Google Scholar
  10. 10.
    Carnap, R.,Logical Foundations of Probability, Univ. Chicago Press (1950).Google Scholar
  11. 11.
    Chang, C. and Lee, R.,Symbolic Logic and Mechanical Theorem Proving, Academic Press, New York (1973).Google Scholar
  12. 12.
    Cohen, P.,Heuristic Reasoning About Uncertainty — An Artificial Intelligence Approach Morgan Kaufmann, Los Altos (1985).Google Scholar
  13. 13.
    Dubois, D. and Prade, H., ‘A class of fuzzy measures based on triangular norms’,Int. J. General Systems, 8(1) (1982).Google Scholar
  14. 14.
    Dubois, D. and Prade, H., ‘Criteria aggregation and ranking of alternatives in the framework of fuzzy set theory’ in: H. Zimmerman, L. A. Zadeh and B. R. Gaines (Eds.).Stud. Management Sci. 20, 209–240 (1984).Google Scholar
  15. 15.
    Duda, R., Hart, P. and Nilson, N., ‘Subjective bayesian methods for rule-based inference systems’, Tech. Note 124, SRI, Menlo Park (1976).Google Scholar
  16. 16.
    Duda, R., Gachnig, J. and Hart, P., ‘Model design in the prospector consultant system for mineral exploration’, in: D. Michie (Ed.)Expert Systems in the Micro-Electronic Age Univ. Press, Edinburgh, pp. 153–167 (1981).Google Scholar
  17. 17.
    de Finetti, B.,Theory of Probbility New York, Wiley (1974).Google Scholar
  18. 18.
    Giles, R., ‘A Nonclassical Logic for Physics’,Studia Logic 33, 313–327 (1974).Google Scholar
  19. 19.
    Giles, R., ‘Łukasiewicz logic and fuzzy set theory’,Intl. J. Man-Machine Stud. 8, 313–327 (1976).Google Scholar
  20. 20.
    Ishizuka, M., Fu, K. and Yao, J., ‘Rule-based damage assessment system for existing structures’,Solid Mechanics Archive 8, 99–118 (1983).Google Scholar
  21. 21.
    Ishizuka, M., ‘Inference methods based on extended Dempster and Shafer's theory for problems with uncertainty/fuzziness’,New Generation Computing 1, 159–186 (1983).Google Scholar
  22. 22.
    Ishizuke, M. and Kanai, N., ‘Prolog-ELF incorporating fuzzy logic’Proc. Ninth IJCAI, pp. 701–703 (1985).Google Scholar
  23. 23.
    Lindley, D. V., ‘Scoring rules and the inevitability of probability’,Int. Statistics Rev.,50, 1–16 (1982).Google Scholar
  24. 24.
    Liu, X. H., Tsai, J. P. and Weigert, Th., ‘Λ-resolution and the interpretation of Λ-implication in fuzzy operator logic’,Inf. Sci. 56, 259–278 (1991).Google Scholar
  25. 25.
    Łukasiewicz, J., ‘Many-valued systems of propositional logic’,Polish Logic, Oxford U.P., Oxford (1967).Google Scholar
  26. 26.
    Lee, R., ‘Fuzzy logic and the resolution principle’,JACM 19, 109–119 (1972).Google Scholar
  27. 27.
    Mukaidono, M., ‘Fuzzy Inference of resolution style’, in R. Yager (Ed.),Fuzzy Set and Possibility Theory, Pergamon, New York, pp. 224–231 (1982).Google Scholar
  28. 28.
    Rosser, J. and Turquette, A.,Many Valued Logic, North-Holland, Amsterdam (1952).Google Scholar
  29. 29.
    Savage, L. J.,The Foundations of Statistics, New York, Wiley (1954).Google Scholar
  30. 30.
    Shafer, G.,A Mathematical Theory of Evidence, Princeton Univ. Press (1976).Google Scholar
  31. 31.
    Shen, Z., Ding, L. and Mukaidono, M., ‘A theoretical framework of fuzzy prolog machine’, in: M. Gupta and T. Yamakawa (Eds.)Fuzzy Computing, North-Holland, Amsterdam (1988) pp. 89–100.Google Scholar
  32. 32.
    Shortliffe, E. H. and Buchanan, B. G., ‘A model of inexact reasoning in medicine’,Math. Biosci. 23, 351–379 (1975).Google Scholar
  33. 33.
    Shortliffe, E.,Computer-Based Medical Consultation: MYCIN, American Elsevier, New York (1976).Google Scholar
  34. 34.
    Weiss, S., Kulikowski, C., Amarel, S. and Safir, A., ‘A model-based method for computer-aided medical decision-making’,AI 11, 145–172 (1978).Google Scholar
  35. 35.
    Yager, R., Ovchinnikov, S., Tong, R. and Nguyen, H.,Fuzzy Sets and Applications, Wiley, New York (1978).Google Scholar
  36. 36.
    Zadeh, L. A., ‘Fuzzy sets’,Inform. Contr. 8, 94–102 (1965).Google Scholar
  37. 37.
    Zadeh, L. A., ‘Fuzzy logic and approximate reasoning’,Synthese 30, 407–428 (1975).Google Scholar
  38. 38.
    Zadeh, L. A., ‘The concept of linguistic variables and its application in approximate reasoning’,Inf. Sci. 8 199–249, 301–357 (1975),Inf. Sci. 9, 43–80 (1976).Google Scholar
  39. 39.
    Zadeh, L. A., ‘Is probability theory sufficient for dealing with uncertainty in AI?’ in: L. Kanal and J. Lemmer (Eds.)Uncertainty in Artificial Intelligence, North-Holland, Amsterdam, pp. 103–116 (1986).Google Scholar
  40. 40.
    Zadeh, L. A., ‘Commonsense and fuzzy logic’, in: N. Cercone and G. McCalla (Eds.)The Knowledge Frontier, Springer, New York, pp. 103–136 (1987).Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Thomas J. Weigert
    • 1
  • Jing-Pha Tsai
    • 2
  • Xuhua Liu
    • 3
  1. 1.Research Institute for Symbolic ComputationJohannes Kepler UniversityLinzAustria
  2. 2.Department of Electrical Engineering and Computer ScienceUniversity of Illinois at ChicagoChicagoU.S.A.
  3. 3.Department of Computer ScienceJilin UniversityChangchunP.R. of China

Personalised recommendations