Abstract
We introduce a new intrinsic definition of fibrations in a 2-category, and show how it may be used (in conjunction with a suitable limit-colimit commutation condition) to define a 2-categorical version of the notion of partial product. We use these notions to show that partial products exist for all fibrations in the 2-category of (small) categories, and to identify the fibrations in the 2-category of toposes and geometric morphisms.
This is a preview of subscription content, access via your institution.
References
J. Bénabou, ‘Some remarks on free monoids in a topos’, inCategory Theory, Como 1990, Lecture Notes in Math. vol. 1488, Springer-Verlag, 1991, 20–29.
G. J. Bird, G. M. Kelly, A. J. Power, and R. H. Street, ‘Flexible limits for 2-categories’,J. Pure Appl. Alg. 61 (1989), 1–27.
A. Carboni and P. T. Johnstone, ‘Connected limits, familial representability and Artin glueing’, in preparation.
F. Conduché, ‘Au sujet de l'existence d'adjoints à droite aux foncteurs “image réciproque” dans la catégorie des catégories’,C. R. Acad. Sci. Paris 275 (1972), A891–894.
R. Dyckhoff, ‘Total reflections, partial products and hereditary factorisations’,Topology Appl. 17 (1984), 101–113.
R. Dyckhoff and W. Tholen, ‘Exponentiable morphisms, partial products and pullback complements’,J. Pure Appl. Alg. 49 (1987), 103–116.
J. W. Gray, ‘Fibred and cofibred categories’, inProceedings of the Conference on Categorical Algebra, La Jolla 1965, Springer-Verlag, 1966, 21–83.
J. W. Gray,Formal Category Theory: Adjointness for 2-Categories. Lecture Notes in Math. vol. 391, Springer-Verlag, 1974.
A. Grothendieck, ‘Catégories fibrées et descente’, Séminaire de Géométrie Algébrique de l'I.H.E.S., 1961.
P. T. Johnstone,Topos Theory, Academic Press, 1977.
P. T. Johnstone, ‘The Gleason cover of a topos, II’,J. Pure Appl. Alg. 22 (1981), 229–247.
P. T. Johnstone, ‘Partial products, bagdomains and hyperlocal toposes’, inApplications of Categories in Computer Science, L.M.S. Lecture Notes Series No. 177, Cambridge University Press, 1992, 315–339.
P. T. Johnstone, ‘Variations on the bagdomain theme’, in preparation.
P. T. Johnstone, ‘Fibrations and pro-arrow equipment’, in preparation.
P. T. Johnstone and A. Joyal, ‘Continuous categories and exponentiable toposes’,J. Pure Appl. Alg. 25 (1982), 255–296.
P. T. Johnstone and I. Moerdijk, ‘Local maps of toposes’,Proc. Lond. Math. Soc. (3)58 (1989), 281–305.
P. T. Johnstone and G. C. Wraith, ‘Algebraic theories in toposes’, inIndexed Categories and Their Applications, Lecture Notes in Math. vol. 661, Springer-Verlag, 1978, 141–242.
A. Joyal and R. Street, ‘Pullbacks equivalent to pseudopullbacks’, Macquarie Mathematics Report no. 92-092, 1992.
G. M. Kelly, ‘On clubs and doctrines’, inCategory Seminar, Sydney 1972/73, Lecture Notes in Math. vol. 420, Springer-Verlag, 1974, 181–256.
G. M. Kelly, ‘On clubs and data type constructors’, inApplications of Categories in Computer Science, L.M.S. Lecture Notes Series No. 177, Cambridge University Press, 1992, 163–190.
B. A. Pasynkov, ‘Partial topological products’,Trans. Moscow Math. Soc. 13 (1965), 153–272.
R. D. Rosebrugh and R. J. Wood, ‘Cofibrations in the bicategory of topoi’,J. Pure Appl. Alg. 32 (1984), 71–94.
R. D. Rosebrugh and R. J. Wood, ‘Cofibrations II: left exact right actions and composition of gamuts’,J. Pure Appl. Alg. 39 (1986), 283–300.
R. D. Rosebrugh and R. J. Wood, ‘Proarrows and cofibrations’,J. Pure Appl. Alg. 53 (1988), 271–296.
R. Street, ‘Fibrations and Yoneda's lemma in a 2-category’, inCategory Seminar, Sydney 1972/73, Lecture Notes in Math. vol. 420, Springer-Verlag, 1974, 104–133.
R. Street, ‘Fibrations in bicategories’,Cahiers Top. Géom. Diff. 21 (1980), 111–160.
R. Street, ‘Conspectus of variable categories’,J. Pure Appl. Alg. 21 (1981), 307–338.
S. J. Vickers, ‘Geometric theories and databases’, inApplications of Categories in Computer Science, L.M.S. Lecture Notes Series No. 177, Cambridge University Press, 1992, 288–314.
R. J. Wood, ‘Abstract proarrows I’,Cahiers Top. Géom. Diff. 23 (1982), 279–290.
G. C. Wraith, ‘Artin glueing’,J. Pure Appl. Alg. 4 (1974), 345–348.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Johnstone, P.T. Fibrations and partial products in a 2-category. Appl Categor Struct 1, 141–179 (1993). https://doi.org/10.1007/BF00880041
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00880041
Mathematics Subject Classifications (1991)
- Primary 18D05, 18D30
- secondary 18A30, 18B25
Key words
- Fibration
- partial product
- 2-category