Aquatic Sciences

, Volume 56, Issue 3, pp 220–242 | Cite as

Nutrient, heavy metal and organic pollutant composition of suspended and bed sediments in the Rhone River

  • S. Santiago
  • R. L. Thomas
  • G. Larbaigt
  • C. Corvi
  • D. Rossel
  • J. Tarradellas
  • D. J. Gregor
  • L. McCarthy
  • J. P. Vernet


The environmental quality of the Rhone River (Switzerland-France) has been assessed with a geochemical survey of the pollutants bound to suspended sediments. Ten samples were collected between Lake Geneva and the Mediterranean Sea in Nobember 1989 by continuous flow centrifugation and analysed for grain size distribution, carbonate, organic C, N, forms of particulate P, trace metals, and organic compounds (chlorobenzenes, organochlorine pesticides, PCBs, and PAHs). Four bed sediment samples were also studied for comparative purposes. The suspended solids provide lower variance by parameter than the bed sediments and are clearly most suitable for synoptic monitoring.

The Upper Rhone River carries a glacial derived sediment with a low nutrient content, the stretch from Geneva to Lyon provides a sediment dominated by carbonate, and in the Lower Rhone the organic matter and phosphorus are relatively increased, mainly due to wastewater effluents and to an industrial P source. High concentrations of metals and organic micropollutants downstream of Lyon indicate a multiple contamination in the Lower Rhone, whereas more specific inputs are located downstream of Geneva and Arles.

The comparison with data from other polluted major systems, the Rhine, the Niagara and the Detroit rivers, shows on overall similarity confirming that the Rhone quality is degraded downstream of Lyon. The levels of particular concern are for Hg, DDT metabolites which reveal a recent release in the basin, PCBs with a likely high chlorine content, and PAHs.

The statistical evaluation of the compositional variables indicates a limited number of well defined associations, suggesting that the contamination of the suspended sediments results from the combination of numerous and intermittent point and diffuse sources in the Rhone River basin.

Key words

River quality sediment-bound contaminants ecotoxicity statistical relationships 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afghan, B.K. and Forbes, M.A., 1987.Analytical protocol for monitoring ambient water quality at the Niagara-on-the-Lake and Fort Erie stations. Report National Water Quality Laboratory, Canada Centre for Inland Waters, Burlington, Ontario, 157 p.Google Scholar
  2. André, B. and Lascombe, C., 1988.Qualité du fleuve Rhône. Synthèse des connaissances. Agence de l'Eau Rhône-Méditerranée-Corse, Lyon, 251 p.Google Scholar
  3. Burrus, D., Thomas, R.L., Dominik, J. and Vernet, J.P., 1989. Recovery and concentration of suspended sediment in the Upper Rhone River by continuous flow centrifugation.Hydrological processes 3:65–74.Google Scholar
  4. Burrus, D., Thomas, R.L., Dominik, B., Vernet, J.P. and Dominik, J., 1990a. Characteristics of suspended sediment in the Upper Rhone River, Switzerland, including the particulate forms of phosphorus.Hydrological processes 4:85–98.Google Scholar
  5. Burrus, D., Thomas, R.L., Dominik, J. and Vernet, J.P., 1990b. Seasonal delivery of the particulate forms of phosphorus to Lake Geneva from the Upper Rhone River.Aquatic Sciences 52:221–235.Google Scholar
  6. Comba, M., E., Kaiser, K.L.E., Maguire, R.J., Tkacz, R.J. and Platford, R.F., 1985. Achemical survey of the Detroit River, 1983. Burlington, Ontario: Canada Centre for Inland Waters, National Water Research Institute, Contrib. n° 85-85.Google Scholar
  7. Corvi, C., Pay, R. and Voguel, J., 1991.Polychlorobiphényles, pesticides chlorés et phosphorés dans les sediments des affluents du Léman. Rep. Comm. Int. protection eaux Léman contre pollut., campagne 1990, Lausanne, Switzerland, 141–148.Google Scholar
  8. Damiani, V. and Thomas, R.L., 1974. Mercury in the sediments of the Pallanza Basin.Nature 251:696–697.Google Scholar
  9. Environment Canada, Department of Fisheries and Oceans, and Health and Welfare Canada, 1991.Toxic chemicals in the Great Lakes and associated effects. Volume I:Contaminant levels and trends. Toronto, Ontario, 488 p.Google Scholar
  10. Favarger, P.Y., 1982. Simultaneous determination of 31 elements in lacustrine sediments by ICP. InAnalytical Techniques in Environmental Chemistry 2, Pergamon Ser. Environ. Sci., 7:371–376.Google Scholar
  11. Favarger, P.Y., Santiago, S. and Vernet, J.P., 1991b.Flux particulaires de quelques nutriments et métaux dans les suspensions du Rhône près de son embouchure dans le Léman. Rep. Comm. Int. protection eaux Léman contre pollut., campagne 1990, Lausanne, Switzerland, 129–140.Google Scholar
  12. Favarger, P.Y., Span, D. and Vernet, J.P., 1991a.Métaux lourds dans les sédiments des rivières du bassin lémanique suisse. Rep. Comm. Int. protection eaux Léman contre pollut., campagne 1990, Lausanne, Switzerland, 149–166.Google Scholar
  13. Frank, R., Holdrinet, M., Braun, H.E., Thomas, R.L., Kemp, L.W. and Jaquet, J.M., 1977. Organochlorine insecticides and PCBs in sediments of Lake St. Clair (1970 and 1974) and Lake Erie (1971).Science of Total Environ. 8:205–227.Google Scholar
  14. Frank, R., Thomas, R.L., Holdrinet, M., McMillan, R.K., Braun, H.E. and Dawson, R., 1981. Organochlorine residues in suspended solids collected from mouths of Canadian streams flowing into the Great Lakes 1974–1977.J. Great Lakes Res. 7:363–381.Google Scholar
  15. Gaudette, H.E., Flight, W.R., Toner, L. and Folger, D.W., 1974. An inexpensive titration method for the determination of organic carbon in recent sediments.J. Sedimentary Petrology 44:249–253.Google Scholar
  16. Golterman, H.L., Sly, P.G. and Thomas, R.L., 1983.Study of the relationship between water quality and sediment transport. Technical Papers in Hydrology 26, United Nations Educational. Scientific and Cultural Org., Paris, 231 p.Google Scholar
  17. Hach, W.R. and Ott, W.L., 1968. Determination of sub-microgram quantities of mercury by atomic absorption spectroscopy.Anal. Chem. 40:2085–2087.Google Scholar
  18. Horowitz, A.J., Elrick, K.A. and Hooper, R.C., 1989. A comparison of instrumental dewatering methods for the separation and concentration of suspended sediment for subsequent trace metal analysis.Hydrological processes 2:163–184.Google Scholar
  19. Internationale Kommission zum Schutze des Rheins gegen Verunreinigung (IKSR) 1990.Schwebstoffuntersuchung 1989. Koblenz, Germany: Rep. Untergruppe Ps 37/90.Google Scholar
  20. Internationale Kommission zum Schutze des Rheins gegen Verunreinigung (IKSR) 1991.Zahlentafeln 190. Koblenz, Germany, 157 p.Google Scholar
  21. Jaquet, J.M., Vernet, J.P. and Ferrari, J.M., 1971. Détermination quantitative par volumétrie de la calcite et de la dolomite dans les roches.Archives des Sciences Genève, Switzerland, 24:259–283.Google Scholar
  22. Johnson, G.D. and Kauss, P.B., 1987.Estimated contaminant loadings in the St. Clair and Detroit rivers — 1984. Toronto, ON: Ontario Ministry of the Environment, Water Resources Branch, 55 p.Google Scholar
  23. Kaiser, K.L.E., Comba, M.E., Hunter, H., Maguire, R.J., Tkacz, R.J. and Platford, R.F., 1985. Trace organic contaminants in the Detroit River.J. Great Lakes Res. 11:386–399.Google Scholar
  24. Kemp, A.L.W., Thomas, R.L., Wong, H.K.T. and Johnston, L., 1977. Nitrogen and C/N ratios in the sediments of Lakes Superior, Huron, St. Clair, Erie, and Ontario.Can. J. Earth Sci. 14:2402–2413.Google Scholar
  25. Kjeldahl, J., 1883. A new method for the determination of nitrogen in organic matter.Z. Anal. Chem. 22:366.Google Scholar
  26. Kuntz, K.W., 1984.Toxic contaminants in the Niagara River, 1975–1982. Burlington, Ontario: Canada Centre for Inland Waters, Inland Waters Directorate, Techn. Bull, n° 134, 47 p.Google Scholar
  27. Kuntz, K.W. and Warry, N.D., 1983. Chlorinated organic contaminants in water and suspended sediments of the Lower Niagara River.J. Great Lakes Res. 9:241–248.Google Scholar
  28. Loizeau, J.L., Arbouille, D., Santiago, S. and Vernet, J.P., 1994. Evaluation of a wide range laser diffraction grain size analyser for use with sediments.Sedimentology 41:353–361.Google Scholar
  29. McMillan, K. and Thomas, R.L., 1977. Large volume water sampling for recovery of suspended solids in Great Lakes tributaries.Abst. 20th Conf. of Great Lakes Res., Ann Arbor, Michigan.Google Scholar
  30. Oliver, B.G. and Bourbonniere, R.A., 1985. Chlorinated contaminants in surficial sediments of lakes Huron, St. Clair, and Erie: Implications regarding sources along the St. Clair and Detroit rivers.J. Great Lakes Res. 11:366–372.Google Scholar
  31. Ongley, E.D. and Blachford, P.D., 1982. Application of continuous flow centrifugation to contaminant analysis of suspended sediment in fluvial systems.Environ. Techn. Letters 3:219–228.Google Scholar
  32. Ongley, E.D. and Thomas, R.L., 1989. Dewatering suspended solids by continuous flow centrifugation: Practical considerations.Hydrologial processes 3:255–260.Google Scholar
  33. Santiago, S. and Thomas, R.L., 1992. Phytoplankton utilization of phosphorus bound to suspended sediments from selected tributaries to Lake Geneva.J. Great Lakes Res. 18:372–389.Google Scholar
  34. Santiago, S., Thomas, R.L. and Corvi, C., 1989. Bioavailability of sediment-associated contaminants from Lake Geneva watershed to natural phytoplankton. InInt. Conf. Heavy Metals in the Environment, ed. J.P. Vernet, 2:270–273. Edinburgh: CEP Consultants.Google Scholar
  35. Santiago, S., Thomas, R.L., Larbaigt, G., Rossel, D., Echeverria, M.A., Tarradellas, J., Loizeau, J.L., McCarthy, L.H., Mayfield, C.I. and Corvi, C., 1993. Comparative ecotoxicity of suspended sediment in the Lower Rhone River using algal fractionation, Microtox® andDaphnia magna bioassays.Hydrobiologia 252:231–244.Google Scholar
  36. Santiago, S., Thomas, R.L., Loizeau, J.L., Favarger, P.Y. and Vernet, J.P., 1990. Further discussion on the intercomparison of the trace metal concentrations and particle size of fluvial sediment recovered from two centrifuge systems.Hydrological processes 4:283–287.Google Scholar
  37. Santiago, S., Thomas, R.L., Loizeau, L.J., Larbaigt, G., Corvi, C., Rossel, D., Tarradellas, J., McCarthy, L.H. and Vernet, J.P., 1992. Particle size characteristics of suspended and bed sediments in the Rhone River.Hydrological processes 6:227–240.Google Scholar
  38. Shear H. and Watson, A.E., 1977.The fluvial transport of sediment-associated nutrients and contaminants. International Joint Commission, Windsor, Ontario, 309 p.Google Scholar
  39. Sonzogni, W.C., Chapra, S.C., Armstrong, D.E. and Logan, T.J., 1982. Bioavailabilty of phosphorus inputs to lakes.J. Environ. Qual. 11:555–563.Google Scholar
  40. Stumm, W. and Morgan, J.J. 1981.Aquatic chemistry. New York: John Wiley and Sons, 707 p.Google Scholar
  41. Thomas, R.L. and Frank, R., 1982. PCB's in sediment and fluvial suspended solids in the Great Lakes.Proc. Int. Workshop on PCB's in the Great Lakes. Univ. Toronto, December 1981. 14:245–267.Google Scholar
  42. Thomas, R.L., Santiago, S., Gandais, V., Zhang, L. and Vernet, J.P., 1992. Forms of particulate phosphorus and the sediment carbon/nitrogen ratio as indicators of phosphorus origins in aquatic systems.Water Poll. Res. J. Canada 26:433–451.Google Scholar
  43. Thomas, R.L., Vernet, J.P. and Frank, R., 1984. ΣDDT, PCBs and HCB in the sediments of Lake Geneva and the Upper Rhône River.Environ. Geology 5:103–113.Google Scholar
  44. Upper Great Lakes Connecting Channels Study (UGLCCS) 1989.Final Report, Volume II. Environment Canada and United States Environmental Protection Agency, 626 p.Google Scholar
  45. Vernet, J.P., Scolari, G. and Rapin, F., 1976. Teneurs en métaux lourds des sédiments de rivières suisses, du Rhône français et de ses principaux affluents.Bull. Bur. Rech. Géol. Min., 2ème sér., sect. III 1/2:31–45.Google Scholar
  46. Vernet, J.P., Thomas, R.L., Jaquet, J.M. and Friedli, R., 1972. Texture of the sediments of the Petit Lac (western Lake Geneva).Eclogae geol. Helv. 65:591–610.Google Scholar
  47. Williams, J.D.H., Jaquet, J.M. and Thomas, R.L., 1976. Forms of phosphorus in the surficial sediments of Lake Erie.J. Fish. Res. Board Can. 33:413–429.Google Scholar
  48. Williams, J.D.H., Shear, H. and Thomas, R.L., 1980. Availability toScenedesmus quadricauda of different forms of phosphorus in sedimentary materials from the Great Lakes.Limnol Oceanogr. 25:1–11.Google Scholar
  49. Young, T.C., DePinto, J.V., Martin, S.C. and Bonner, J.S., 1985. Algal-available particulate phosphorus in the Great Lakes Basin.J. Great Lakes Res. 11:434–446.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • S. Santiago
    • 1
    • 2
  • R. L. Thomas
    • 2
  • G. Larbaigt
    • 3
  • C. Corvi
    • 4
  • D. Rossel
    • 5
  • J. Tarradellas
    • 5
  • D. J. Gregor
    • 6
  • L. McCarthy
    • 7
  • J. P. Vernet
    • 2
  1. 1.ECOCONSEIL SALa Chaux-de-FondsSwitzerland
  2. 2.Institute F. A. FORELUniversity of GenevaVersoixSwitzerland
  3. 3.Agence de l'Eau Rhône-Méditerranée-CorsePierre-BéniteFrance
  4. 4.Laboratoire Cantonal de ChimieGenevaSwitzerland
  5. 5.Institut de Génie de l'EnvironnementEcole Polytechnique Fédérale, EcublensLausanneSwitzerland
  6. 6.Canada Centre for Inland WatersNational Water Research InstituteBurlingtonCanada
  7. 7.Department of BiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations