pure and applied geophysics

, Volume 127, Issue 2–3, pp 473–489 | Cite as

Minimal joule dissipation models of magnetospheric convection

  • D. D. Barbosa


This paper gives a topical review of theoretical models of magnetospheric convection based on the concept of minimal Joule dissipation. A two-dimensional slab model of the ionosphere featuring an enhanced conductivity auroral oval is used to compute high-latitude electric fields and currents. Mathematical methods used in the modeling include Fourier analysis, fast Fourier transforms, and variational calculus. Also, conformal transformations are introduced in the analysis, which enable the auroral oval to be represented as a nonconcentric, crescent-shaped figure. Convection patterns appropriate to geomagnetic quiet and disturbed conditions are computed, the differentiating variable being the relative amount of power dissipated in the magnetospheric ring current. When ring current dissipation is small, the convection electric field is restricted to high latitudes (shielding regime), and when it is large, a significant penetration of the field to low latitudes occurs, accompanied by an increase in the ratio of the region 1 current to the region 2 current.

Key words

Magnetospheric convection Joule dissipation high-latitude ionosphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfvén, H. (1939),Theory of magnetic storms. I, Kungl. Sv. Vetenskaakad. Handl.18, (3).Google Scholar
  2. Axford, W. A. andHines, C. O. (1961),A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys.39, 1433–1464.Google Scholar
  3. Banks, P. M., Araki, T., Clauer, C. R., St.-Maurice, J. P., andFoster, J. C. (1984),The interplanetary electric field, cleft currents and plasma convection in the polar caps. Planet. Space Sci.32, 1551–1557.Google Scholar
  4. Barbosa, D. D. (1979a),Field-aligned current sources in the high-latitude ionosphere. Ann. Geophys.35, 111–119.Google Scholar
  5. Barbosa, D. D. (1979b),High-latitude field-aligned current sources and induced electric fields. J. Geophys. Res.84, 5175–5180.Google Scholar
  6. Barbosa, D. D. (1984a),Dynamics of field-aligned current sources at Earth and Jupiter. InMagnetospheric Currents (ed. Potemra, T. A.) (American Geophysical Union. Washington, D.C. 1984), pp. 350–357.Google Scholar
  7. Barbosa, D. D. (1984b),Fourier analysis of polar cap electric field and current distributions. J. Geophys. Res.89, 867–875.Google Scholar
  8. Barbosa, D. D. (1984c),An energy principle for high-latitude electrodynamics. J. Geophys. Res.89, 2881–2890.Google Scholar
  9. Barbosa, D. D. (1985),Polar convection patterns under quiet conditions. J. Geophys. Res.90, 9711–9716.Google Scholar
  10. Chapman, S. andFerraro, V. C. A. (1931),A new theory of magnetic storms. Terr. Mag.36, 77–97, 171–186.Google Scholar
  11. Chen, A. J. (1970),Penetration of low-energy protons deep into the magnetosphere. J. Geophys. Res.75, 2458–2467.Google Scholar
  12. Churchill, R. V., Brown, J. W., andVerhey, R. F.,Complex Variables and Applications (3rd ed.), (McGraw-Hill, New York 1974), pp. 314–324.Google Scholar
  13. Daniell, R. E., Jr. andCloutier, P. A. (1977),Distribution of ionospheric currents induced by the solar wind interaction with Venus. Planet. Space Sci.25, 621–628.Google Scholar
  14. Dungey, J. W. (1961),Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett.6, 47–48.Google Scholar
  15. Fontaine, D. andBlanc, M. (1983),A theoretical approach to the morphology of the diffuse auroral zones. J. Geophys. Res.88, 7171–7184.Google Scholar
  16. Foster, J. C., Holt, J. M., Musgrove, R. G., andEvans, D. S. (1986),Ionospheric convection associated with discrete levels of particle precipitation. Geophys. Res. Lett.13, 656–659.Google Scholar
  17. Friis-Christensen, E., Kamide, Y., Richmond, A. D., andMatsushita, S. (1985),Interplanetary magnetic field control of high-latitude electric fields and currents determined from Greenland magnetometer data. J. Geophys. Res.90, 1325–1338.Google Scholar
  18. Hardy, D. A., Gussenhoven, M. S., andHoleman, E. (1985),A statistical model of auroral electron precipitation, J. Geophys. Res.90, 4229–4248.Google Scholar
  19. Holt, J. M., Wand, R. H., Evans, J. v., andOliver, W. L. (1987),Empirical models for the plasma convection at high latitudes from Millstone Hill observations, J. Geophys. Res.92, 203–212.Google Scholar
  20. Iijima, T. andPotemra, T. A. (1978),Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res.83, 599–615.Google Scholar
  21. Iwasaki, N. andNishida, A. (1967),Ionospheric current system produced by an external electric field in the polar cap. Rep. Ionos. Space Res. Jap.21, 17–27.Google Scholar
  22. Kamide, Y. andMatsushita, S. (1979),Simulation studies of ionospheric electric fields and currents in relation to field-aligned currents 1. Quiet periods J. Geophys. Res.84, 4083–4093.Google Scholar
  23. Kamide, Y. andRichmond, A. D. (1986),Recent advances in studies of magnetosphere-ionosphere coupling, J. Geomag. Geoelectr.38, 653–714.Google Scholar
  24. Kavanaugh, L. D., Jr.,Freeman, J. W. Jr., andChen, A. J. (1968),Plasma flow in the magnetosphere. J. Geophys. Res.73, 5511–5519.Google Scholar
  25. Maxwell, J. C.,A Treatise on Electricity and Magnetism (vol. I), (Clarendon, Oxford 1873), pp. 345–359.Google Scholar
  26. Parker, E. N. (1988a),Dynamics of interplanetary gas and magnetic fields, Astrophys. J.128, 664–685.Google Scholar
  27. Parker, E. N. (1958b),Interaction of the solar wind with the geomagnetic field, Phys. Fluids1, 171–187.Google Scholar
  28. Piddington, J. H. (1960),A theory of polar geomagnetic storms. Geophys. J. R. Astr. Soc.3, 314–332.Google Scholar
  29. Piddington, J. H. (1962),A hydromagnetic theory of geomagnetic storms and auroras. Planet. Space Sci.9, 947–957.Google Scholar
  30. Potemra, T. A.,Magnetospheric Currents (American Geophysical Union, Washington, D.C. 1984).Google Scholar
  31. Rees, D., Fuller-Rowell, T. J., Gordon, R., Smith, M. F., Maynard, N. C., Heppner, J. P., Spencer, N. N., Wharton, L., Hays, P. B., andKilleen, T. L. (1986),A theoretical and empirical study of the response of the high latitude thermosphere to the sense of the ‘Y’ component of the interplanetary magnetic field. Planet. Space Sci.34, 1–40.Google Scholar
  32. Schield, M. A., Freeman, J. W., andDessler, A. J. (1969),A source for field-aligned currents at auroral latitudes, J. Geophys. Res.74, 247–256.Google Scholar
  33. Siscoe, G. L. (1982),Energy coupling between regions 1 and 2 Birkeland current systems, J. Geophys. Res.87, 5124–5130.Google Scholar
  34. Spiro, R. W., Reiff, P. H., andMaher, L. J. (1982),Precipitating electron energy flux and auroral zone conductances—an empirical model, J. Geophys. Res.87, 8215–8227.Google Scholar
  35. Vasyliunas, V. M. (1968),Discussion of paper by Harold E. Taylor and Edward W. Hones, Jr., ‘Adiabatic motion of auroral particles in a model of the electric and magnetic field surrounding the Earth’, J. Geophys. Res.73, 5805–5807.Google Scholar
  36. Vasyliunas, V. M.,Mathematical models of magnetospheric convection and its coupling to the ionosphere, InParticles and Fields in the Magnetosphere (ed. McCormac, B. M.) (Reidel, Dordrecht 1970), pp. 60–71.Google Scholar
  37. Vasyliunas, V. M.,The interrelationship of magnetospheric processes, InEarth's magnetospheric Processes (ed. McCormac, B. M.) (Reidel, Dordrecht 1972), pp. 29–38.Google Scholar
  38. Vickrey, J. F., Vondrak, R. R., andMathews, S. J. (1981),The diurnal and latitudinal variation of auroral zone ionospheric conductivity. J. Geophys. Res.86, 65–75.Google Scholar
  39. Yasuhara, F., Kamide, Y., andAkasofu, S.-I. (1975),Field-aligned and ionospheric currents. Planet. Space Sci.23, 1355–1368.Google Scholar

Copyright information

© Birkhäuser Verlag 1988

Authors and Affiliations

  • D. D. Barbosa
    • 1
  1. 1.Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations