Skip to main content
Log in

A mathematical model of the middle and high latitude ionosphere

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

A time-dependent three-dimensional model of the middle and high latitude ionosphere is described. The density distributions of six ion species (NO+, N +2 , N +2 , O+, N+, He+) and the electron and ion temperatures are obtained from a numerical solution of the appropriate continuity, momentum and energy equations. The equations are solved as a function of height for an inclined magnetic field atE andF region altitudes. The three-dimensional nature of the model is obtained by following flux tubes of plasma as they convect or corotate through a moving neutral atmosphere. The model takes account of field-aligned diffusion, cross-field electrodynamic drifts, thermospheric winds, polar wind escape, energy-dependent chemical reactions, neutral composition changes, ion production due to solar EUV radiation and auroral precipitation, thermal conduction, diffusion-thermal heat flow and local heating and cooling processes. The model also takes account of the offset between the geomagnetic and geographic poles. A complete description of the ionospheric model is given, including a derivation of the relevant transport equations, formulas for all of the chemical and physical processes contained in the model, a discussion of the numerical technique, and a description of the required model inputs. The effects that various chemical and physical processes have on the ionosphere are also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albritton, D. L., Dotan, I., Lindinger, W., McFarland, M., Tellinghuiser, J. andFehsenfeld, F. C. (1977),Effects of ion speed distributions in flow drift tube studies on ion-neutral reactions. J. Chem. Phys.66, 410.

    Google Scholar 

  • Anderson, D. N. (1981),Modeling the ambient, low latitude F region ionosphere—a review. J. Atmos. Terr. Phys.43, 753–762.

    Google Scholar 

  • Bailey, G. J., Moffett, R. J. andMurphy, J. A. (1978),Interhemispheric flow of thermal plasma in a closed magnetic flux tube at mid-latitudes under sunspot minimum conditions. Planet. Space Sci.26, 753–765.

    Google Scholar 

  • Banks, P. M. andKockarts, G. (1973),Aeronomy, (Academic, New York).

    Google Scholar 

  • Chandler, M. O., Behnke, R. A., Nagy, A. F., Fontheim, E. G., Richards, P. G. andTorr, D. G. (1983),Comparison of measured and calculated low-latitude ionospheric properties. J. Geophys. Res.88, 9187–9196.

    Google Scholar 

  • Chapman, S. (1931),The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth-II grazing incidence. Proc. Phys. Soc. (London)43, 483–501.

    Google Scholar 

  • Chapman, S. andCowling, T. G. (1970),The mathematical theory of non-uniform gases (Cambridge University Press, Cambridge).

    Google Scholar 

  • Chen, W. M. andHarris, R. D. (1971),An ionospheric E-region night-time model, J. Atmos. Terr. Phys.33, 1193–1207.

    Google Scholar 

  • Comes, F. J. andElzer, A. (1968),Photoionisationsuntersuchungen an Atomstrahlen, III, der Ionisierungsquerschnitt des Atomaness Stickstoff. Z. Nutr.23, 133.

    Google Scholar 

  • Conrad, J. R. andSchunk, R. W. (1979),Diffusion and heat flow equations with allowance for large temperature differences between interacting species. J. Geophys. Res.84, 811–822.

    Google Scholar 

  • Crank, J. andNicolson, P. (1947),A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Cambridge Philos. Soc.43, 50–67.

    Google Scholar 

  • Dalgarno, A. (1968),Collisions in the ionosphere. Advan. At. Mol. Phys.4, 381–410.

    Google Scholar 

  • Fehsenfeld, F. C. (1977),The reactions of O +2 with atomic nitrogen and NO + H 2 O and NO +2 with atomic oxygen. Planet. Space Sci.25, 195.

    Google Scholar 

  • Fehsenfeld, F. C., Dunkin, D. B. andFerguson, E. E. (1970),Rate constants for the reaction of CO +2 with O, O 2 and NO; N +2 with O and NO; and O +2 with NO. Planet. Space Sci.18, 1267–1269.

    Google Scholar 

  • Feldstein, Y. I. andStarkov, G. V. (1967),Dynamics of auroral belt and polar geomagnetic disturbances. Planet. Space Sci.15, 209–229.

    Google Scholar 

  • Fite, W. L. (1969),Positive ion reactions. Can. J. Chem.47, 1797–1807.

    Google Scholar 

  • Foster, J. C. (1983),An empirical electric field model derived from chatanika radar data. J. Geophys. Res.88, 981–987.

    Google Scholar 

  • Hedin A. E. et al. (1977a),A global thermospheric model based on mass spectrometer and incoherent scatter data, MSIS 1, N 2 density and temperature. J. Geophys. Res.82, 2139–2147.

    Google Scholar 

  • Hedin, A. E. et al. (1977b),A global thermospheric model based on mass spectrometer and incoherent scatter data, MSIS 2, composition. J. Geophys. Res.82, 2148–2156.

    Google Scholar 

  • Heelis, R. A., Lowell, J. K. andSpiro, R. W. (1982),A model of the high-latitude ionospheric convection pattern. J. Geophys. Res.87, 6339–6345.

    Google Scholar 

  • Henry, R. J. W. (1968),Photoionization cross sections for N and O +. J. Chem. Phys.48, 3635.

    Google Scholar 

  • Henry, R. J. W., Burke, P. G. andSinfailam, A. L. (1969),Scattering of electrons by C, N, O, N +,O + and O ++. Phys. Rev.178, 218.

    Google Scholar 

  • Heppner, J. P. (1977),Empirical models of the high-latitude electric fields. J. Geophys. Res.82, 1115–1125.

    Google Scholar 

  • Heroux, L. andHinteregger, H. E. (1978),Aeronomical reference spectrum for solar UV below 2000 A. J. Geophys. Res.83, 5305–5308.

    Google Scholar 

  • Hinteregger, H. E., Bedo, D. E., Manson, J. E. andSkillman, D. R. (1977),EUV flux variations with solar rotation observed during 1974–1976 from the AE-C satellite, Space Res.17, 533–544.

    Google Scholar 

  • Hoegy, W. R. (1976),New fine structure cooling rate. Geophys. Res. Lett.3, 541–544.

    Google Scholar 

  • Huntress, W. T. andAnicich, V. G. (1976),On the reaction of N + ions with O 2, Geophys. Res. Lett3, 317.

    Google Scholar 

  • Kamide, Y., Craven, J. D., Frank, L. A., Ahn, B.-H. andAkasofu, S.-I. (1986),Modeling substorm current systems using conductivity distributions inferred from DE auroral images. J. Geophys. Res.91, 11235–11256.

    Google Scholar 

  • Kirby-Docken, K., Constantinides, E. R., Babeu, S., Oppenheimer, M. andVictor, G. A. (1978),Photoionization and photoabsorption cross sections of thermospheric species: He, O, N 2 and O 2. Atomic Data and Nuclear Data Tables.

  • Knudsen, W. C., Banks, P. M., Winningham, J. D. andKlumpar, D. M. (1977),Numerical model of the convecting F 2 ionosphere at high latitudes. J. Geophys. Res.82, 4784–4792.

    Google Scholar 

  • Kosmider, R. G. andHasted, J. B. (1975),Collision processes of drifting O + and N + ions. J. Phys. B.8, 273.

    Google Scholar 

  • Lindinger, W., Fehsenfeld, F. C., Schmeltekopf, A. L. andFerguson, E. E. (1974),Temperature dependence of some ionospheric ion-neutral reactions from 300°–900° K. J. Geophys. Res.79, 4753.

    Google Scholar 

  • Matsushita, S. andXu, W.-Y. (1982),Equivalent ionospheric current systems representing IMF sector effects on the polar geomagnetic field. Planet. Space Sci.30, 641–656.

    Google Scholar 

  • McElroy, M. B. (1967),Atomic nitrogen ions in the upper atmosphere. Planet. Space Sci.15, 457.

    Google Scholar 

  • Mcfarland, M., Albritton, D. L., Fehsenfeld, F. C., Ferguson, E. E. and andSchmeltekopf, A. L. (1973),Flow-drift technique for ion mobility and ion-molecule reaction rate constant measurements, II, positive ion reactions of N +,O +,and N +2 with O 2 and O + with N 2+O reaction. J. Chem. Phys.59, 6620–6628.

    Google Scholar 

  • McFarland, M., Albritton, D. L., Fehsenfeld, F. C., Ferguson, E. E. andSchmeltekopf, A. L. (1974),Energy dependence and branching ratio of the N +2 +O reaction. J. Geophys. Res.79, 2925.

    Google Scholar 

  • Mehr, F. J. andBiondi, M. A. (1969),Electron temperature dependence of recombination of O +2 and N +2 ions with electrons. Phys. Rev.181, 264.

    Google Scholar 

  • Moffett et al. (1986), Adv. Space Res.6, 153.

    Google Scholar 

  • Murphy, J. A., Bailey, G. L. andMoffett, R. J. (1976),Calculated daily variations of O + and H + at Midlatitudes. J. Atmos. Terr. Phys.38, 351–364.

    Google Scholar 

  • Prasad, S. S. andFurman, D. R. (1973),Electron cooling by molecular oxygen. J. Geophys. Res.78, 6701–6707.

    Google Scholar 

  • Quegan, S. Bailey, G. J., Moffett, R. J., Heelis, R. A., Fuller-Rowell, T. J., Rees, D. andSpiro, R. W. (1982),A theoretical study of the distribution of ionization in the high-latitude ionosphere and the plasmasphere: first results on the mid-latitude trough and the light-ion trough. J. Atmos. Terr. Phys.44, 619–640.

    Google Scholar 

  • Raitt, W. J., Schunk, R. W. andBanks, P. M. (1978a),Helium ion outflow from the terrestrial ionosphere. Planet. Space Sci.26, 255–268.

    Google Scholar 

  • Raitt, W. J., Schunk, R. W. andBanks, P. M. (1978b),Quantitative calculations of helium ion escape fluxes from the polar ionospheres. J. Geophys. Res.83, 5617–5623.

    Google Scholar 

  • Rees, M. H., Jones, R. A. andWalker, J. C. G. (1971),The influence of field-aligned currents on auroral electron temperatures. Planet. Space Sci.19, 313–325.

    Google Scholar 

  • Richards P. G. andTorr, D. G. (1984),An investigation of the consistency of the ionospheric measurements of the photoelectron flux and solar EUV flux. J. Geophys. Res.89, 5625–5635.

    Google Scholar 

  • Rishbeth, H. andGarriott, O. K. (1969),Introduction to Ionospheric Physics (Academic Press, New York).

    Google Scholar 

  • Rishbeth, H. andHanson, W. B. (1974),A comment on plasma pile-up in the F-region. J. Atmos. Terr. Phys.36, 703–706.

    Google Scholar 

  • Roble, R. G. (1975),The calculated and observed diurnal variation of the ionosphere over Millstone Hill on March 23–24, 1970. Planet. Space Sci.23, 1017–1030.

    Google Scholar 

  • Roble, R. G. andRees, M. H. (1977),Time-dependent studies of the aurora: effects of particle precipitation on the dynamic morphology of ionospheric and atmospheric properties. Planet. Space Sci.25, 991–1010.

    Google Scholar 

  • Rutherford J. A. andVroom, D. A. (1971),Effect of metastable O + (2 D) on reactions of O + with nitrogen molecules. J. Chem. Phys.55, 5622.

    Google Scholar 

  • Schunk, R. W. (1975),Transport equations for aeronomy. Planet. Space Sci.23, 437–485.

    Google Scholar 

  • Schunk, R. W. (1977),Mathematical structure of transport equations for multispecies flows. Rev. Geophys. Space Phys.15, 429–445.

    Google Scholar 

  • Schunk, R. W. (1983),Solar-terrestrial physics (D. Reidel, Dordrecht), pp. 609–676.

    Google Scholar 

  • Schunk, R. W. (1987),Interactions between the polar ionosphere and thermosphere. Physica Scripta,T18, 256–275.

    Google Scholar 

  • Schunk, R. W. andNagy, A. F. (1978),Electron temperatures in the F-region of the ionosphere: theory and observations. Rev. Geophys. Space Phys.16, 355–399.

    Google Scholar 

  • Schunk, R. W. andRaitt, W. J. (1980),Atomic nitrogen and oxygen ions in the daytime high-latitude F-region. J. Geophys. Res.85, 1255–1272.

    Google Scholar 

  • Schunk R. W. andSojka, J. J. (1982),Ion temperature variations in the daytime high-latitude F-region. J. Geophys. Res.87, 5169–5183.

    Google Scholar 

  • Schunk, R. W. andSojka, J. J. (1987),Ionospheric features induced by magnetospheric processes, In:Quantitative modeling of magnetosphere-ionosphere coupling processes. Kyoto, Japan, 11–16.

  • Schunk, R. W. andWalker, J. C. G. (1970),Transport properties of the ionospheric electron gas. Planet. Space Sci.18, 1535–1550.

    Google Scholar 

  • Schunk, R. W. andWalker, J. C. G. (1973),Theoretical ion densities in the lower ionosphere. Planet. Space Sci.21, 1875–1896.

    Google Scholar 

  • Schunk, R. W., Raitt, W. J. andBanks, P. M. (1975),Effect of electric fields on the daytime high-latitude E-and F-regions. J. Geophys. Res.80, 3121–3130.

    Google Scholar 

  • Schunk, R. W., Banks, P. M. andRaitt, W. J. (1976),Effects of electric fields and other processes upon the nighttime high latitude F-layer. J. Geophys. Res.81, 3271–3282.

    Google Scholar 

  • Schunk, R. W., Sojka, J. J. andBowline, M. D. (1986),Theoretical study of the electron temperature in the high latitude ionosphere for solar maximum and winter conditions. J. Geophys. Res.91, 12041–12054.

    Google Scholar 

  • Schunk, R. W., Sojka, J. J. andBowline, M. D. (1987),Theoretical study of the effect of ionospheric return currents on the electron temperature. J. Geophys. Res.92, 6013–6022.

    Google Scholar 

  • Smith, F. L. andSmith, C. (1972),Numerical evaluation of Chapman's grazing incidence integral ch(X,χ). J. Geophys. Res.77, 3592–3597.

    Google Scholar 

  • Sojka, J. J. andSchunk, R. W. (1985),A theoretical study of the global F region for June solstice, solar maximum, and low magnetic activity. J. Geophys. Res.90, 5285–5298.

    Google Scholar 

  • Sojka, J. J. andSchunk, R. W. (1987),Magnetospheric control of the bulk ionospheric plasma, in: Proceedings of the AGARD/NATO Symposium on ‘The aerospace environment at high altitudes and its implications for spacecraft charging and communications’, Hague, The Netherlands, 2.1–2.13.

  • Sojka, J. J., Raitt, W. J. andSchunk, R. W. (1981a),A theoretical study of the high-latitude winter F-region at solar minimum for low magnetic activity. J. Geophys. Res.86, 609–621.

    Google Scholar 

  • Sojka, J. J., Raitt, W. J. andSchunk, R. W. (1981b),Theoretical predictions for ion composition in the high-latitude winter F-region for solar minimum and low magnetic activity. J. Geophys. Res.86, 2206–2216.

    Google Scholar 

  • Sojka, J. J., Rasmussen, C. E. andSchunk, R. W. (1986),An interplanetary magnetic field dependent model of the ionospheric convection electric field. J. Geophys. Res.91, 11281–11290.

    Google Scholar 

  • Spiro, R. W., Reiff, P. H. andMaher, L. H. (1982),Precipitating electron energy flux and auroral zone conductances: An empirical model. J Geophys. Res.87, 8215–8227.

    Google Scholar 

  • Sterling, D. L., Hanson, W. B., Moffett, R. J. andBaxter, R. G. (1969),Influence of electromagnetic drifts and neutral air winds on some features of the F 2 region. Radio Sci.4, 1005–1023.

    Google Scholar 

  • St.-Maurice J.-P. andTorr, D. G. (1978),Nonthermal rate coefficients in the ionosphere: the reactions of O + with N 2,O 2,and NO. J. Geophys. Res.83, 969.

    Google Scholar 

  • Strobel, D. F. andMcElroy, M. B. (1970),The F 2-layer at middle latitudes. Planet. Space Sci.18, 1181–1202.

    Google Scholar 

  • Stubbe, P. andVarnum, W. S. (1972),Electron energy transfer rates in the ionosphere. Planet. Space Sci.20, 1121–1126.

    Google Scholar 

  • Torr, D. G. andOrsini N. (1978),The effect of N +2 recombination on the aeronomic determination of the charge exchange rate coefficient of O + (2 D) with N 2. Geophys. Res. Lett.5, 657.

    Google Scholar 

  • Torr, D. G., Torr, M. R., Walker, J. C. G., Brace, L. H., Brinton, H. C., Hanson, W. B., Hoffmann, R. H., Nier, A. O. andOppenheimer, M. (1976a),Recombination of NO + in the ionosphere. Geophys. Res. Lett.3, 209.

    Google Scholar 

  • Torr, D. G., Torr, M. R., Walker, J. C. G., Nier, A. O., Brace, L. H. andBrinton, H. C. (1976b),Recombination of O +2 in the ionosphere. J. Geophys. Res.81, 5578.

    Google Scholar 

  • Torr, D. G., Orsini, N., Torr, M. R., Hanson, W. B., Hoffmann, J. H. andWalker, J. C. G. (1977),Determination of the rate coefficient for the N 2 ++O reaction in the ionosphere. J. Geophys. Res.82, 1631.

    Google Scholar 

  • Torr, M. R., Torr, D. G., Ong, R. A. andHinteregger, H. E. (1979a),Ionization frequencies for major thermospheric constituents as a function of solar cycle 21. Geophys. Res. Lett.10, 771–774.

    Google Scholar 

  • Torr, D. G., Torr, M. R., Brinton, H. C., Brace, L. H., Spencer, N. W., Hedin, A. E., Hanson, W. B., Hoffmann, J. H., Nier, A. O., Walker, J. C. G. andRusch, D. W. (1979b),An experimental and theoretical study of the mean diurnal variation of O +,NO +,O +2 ,and N +2 ions in the mid-latitude F 1 layer of the ionosphere. J. Geophys. Res.84, 3360–3372.

    Google Scholar 

  • Volland, H. (1978),A model of the magnetospheric electric convection field. J. Geophys. Res.83, 2695–2699.

    Google Scholar 

  • Wallis, D. D. andBudzinski, E. E. (1981),Empirical models of height integrated conductivities. J. Geophys. Res.86, 125–137.

    Google Scholar 

  • Walls, F. L. andDunn, G. H. (1974),Measurement of total cross sections for electron recombination with NO + and O +2 using ion storage techniques. J. Geophys. Res.79, 1911–1915.

    Google Scholar 

  • Watkins, B. J. (1978),A numerical computer investigation of the polar F region ionosphere. Planet. Space Sci.26, 559–569.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schunk, R.W. A mathematical model of the middle and high latitude ionosphere. PAGEOPH 127, 255–303 (1988). https://doi.org/10.1007/BF00879813

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00879813

Key words

Navigation