Aquatic Sciences

, Volume 52, Issue 4, pp 345–359 | Cite as

The effect of light on the release of organic compounds by the cyanobacteriumOscillatoria rubescens

  • M. Feuillade
  • J. Feuillade
  • V. Fiala


The effect of light intensity on the release of dissolved organic carbon during photosynthesis on NaH14CO3 was investigated using the phytoplanktonic CyanobacteriumOscillatoria rubescens. The released products were fractionated by molecular size and chemical identifications attempted using combined thin-layer electrophoresis and chromatography, and high pressure liquid chromatography.

Within the range of irradiances tested (from 6 to 60 µmole m−2 sec−1), though the upper one inhibited photosynthesis ofO. rubescens, light had little effect on the quantity and composition of the excreted products. The released carbon was always lower than 3% of the incorporated carbon, and mainly composed (62 to 86%) by small molecular weight compounds. The prevailing identified compounds were amino acids which represented more than 20% of the excreted carbon. Among organic acids, glycolic acid accounted for less than 2% of the recovered radioactivity. Glucose was the only identified sugar.

Key words

Excretion cyanobacteria oscillatoria 



excreted organic carbon


dissolved organic carbon


percent extracellular release


low molecular weight


high molecular weight


amino acids


m−2 sec−1 = µEinsteins m−2 sec−1


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bjørnsen, P. K., 1988. Phytoplankton exudation of organic matter: Why do healthy cells do it?. Limnol. Oceanogr. 33:151–154.Google Scholar
  2. Cheng, K. H., A. G. Miller, and B. Colman, 1972. An investigation of glycolate excretion in two species of blue-green algae. Planta 103:110–116.Google Scholar
  3. Chrost, R. J., 1981. The composition and bacterial utilization of DOC released by phytoplankton. Kieler Meeresforsch. Sonderh. 5:325–332.Google Scholar
  4. Collins, C. D., and C. W. Boylen, 1982. Physiological responses ofAnabaena variabilis (Cyanophyceae) to instantaneous exposure to various combinations of light intensity and temperature. J. Phycol. 18:206–211.Google Scholar
  5. Cosper, E., 1982. Effects of variations in light intensity on the efficiency of growth ofSkeletonema costatum (Bacillariophyceae) in a cyclostat. J. Phycol. 18:360–368.Google Scholar
  6. Fallowfield, H. J., and M. J. Daft, 1988. The extracellular release of dissolved organic carbon by freshwater cyanobacteria and algae and the interaction withLysobacter CP.1. Br. Phycol. J. 23:317–326.Google Scholar
  7. Feuillade, J., and M. Feuillade, 1979. A chemostat device adapted to planktonicOscillatoria cultivation. Limnol. Oceanogr. 24:562–564.Google Scholar
  8. Feuillade, J., and M. Feuillade, 1981. Le métabolisme photosynthétique d'Oscillatoria rubescens D.C. (Cyanophycée). I: La carboxylation initiale dans des conditions favorables à la croissance. Arch. Hydrobiol. 90:410–426.Google Scholar
  9. Feuillade, J., M. Feuillade, and E. Jolivet, 1982. Photosynthetic metabolism in the CyanophytaOscillatoria rubescens D.C. II. Carbon metabolism under nitrogen starvation. Arch. Microbiol. 131:107–111.Google Scholar
  10. Feuillade, M., Ph. Dufour, J. Feuillade, and J. P. Pelletier, 1986. Excretion de carbone organique par le phytoplancton lémanique. Schweiz. Z. Hydrol. 48:18–33.Google Scholar
  11. Feuillade, M., Ph. Dufour, and J. Feuillade, 1988. Organic carbon release by phytoplankton and bacterial reassimilation. Schweiz. Z. Hydrol. 50:115–135.Google Scholar
  12. Fogg, G. E., 1966. The extracellular products of algae. Oceanogr. Mar. Biol. Ann. Rev. 4:195–212.Google Scholar
  13. Fogg, G. E., 1971. Extracellular products of algae in freshwater. Arch. Hydrobiol. Beih. Ergebn. Limnol. 5:1–25.Google Scholar
  14. Fogg, G. E., 1983. The ecological significance of extracellular products of phytoplankton photosynthesis. Bot. Mar. 26:3–14.Google Scholar
  15. Gocke, K., 1970. Untersuchungen über Abgabe und Aufnahme von Aminosäuren und Polypeptiden durch Planktonorganismen. Arch. Hydrobiol. 67:285–367.Google Scholar
  16. Gorham, P. R., J. Mc Lachlan, U. T. Hammer, and W. K. Kim, 1964. Isolation and culture of toxic strains ofAnabaena flos-aquae (Lung.) de Breb. Verh. Internat. Verein. Limnol. 15:796–804.Google Scholar
  17. Hellebust, J. A., 1965. Excretion of some organic compounds by marine phytoplankton. Limnol. Oceanogr. 10:192–206.Google Scholar
  18. Hellebust, J. A., 1974. Extracellular products. In Stewart W. D. P. (ed) Algal Physiology and Biochemistry. Blackwell Scientific Publications, Oxford. 838–863.Google Scholar
  19. Hino, S., 1988. Extracellular release of organic matter associated with the physiological state of freshwater blue-green algae. Arch. Hydrobiol. 113:307–317.Google Scholar
  20. Ignatiades, L., and G. E. Fogg, 1973. Studies on the factors affecting the release of organic matter bySkeletonema costatum (Greville) Cleve in culture. J. mar. biol. Ass. U.K. 53:937–956.Google Scholar
  21. Iturriaga, R., 1981. Phytoplankton photoassimilated extracellular products: heterotrophic utilization in marine environment. Kieler Meeresforsch. Sonderh. 5:318–324.Google Scholar
  22. Jones, A. K., and R. C. Cannon, 1986. The release of micro-algal photosynthate and associated bacterial uptake and heterotrophic growth. Br. Phycol. J. 21:341–358.Google Scholar
  23. Jüttner, F., and T. Matuschek, 1978. The release of low molecular weight compounds by the phytoplankton in an eutrophic lake. Water Research 12:251–255.Google Scholar
  24. Kato, K., and H. H. Stabel, 1984. Studies on the carbon flux from phyto-bacterioplankton communities in Lake Constance. Arch. Hydrobiol. 102:177–192.Google Scholar
  25. Krupka, H. M. and M. Feuillade, 1988. Amino acids as a nitrogen source for growth ofOscillatoria rubescens D.C. Arch. Hydrobiol. 112:125–142.Google Scholar
  26. Lancelot, C., and G. Billen, 1985. Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems. Advances in aquatic microbiology 3:263–321.Google Scholar
  27. Lovell, C. R., and A. Konopka, 1985. Excretion of photosynthetically fixed organic carbon by metalimnetic phytoplankton. Microb. Ecol. 11:1–9.Google Scholar
  28. Mague, T. H., E. Friberg, D. J. Hughes, and I. Morris, 1980. Extracellular release of carbon by marine phytoplankton; a physiological approach. Limnol. Oceanogr. 25:262–279.Google Scholar
  29. Meffert, M. E., and H. Zimmermann-Telschow, 1979. Net release of nitrogenous compounds by axenic and bacteria-containing cultures ofOscillatoria redekei (Cyanophyta). Arch. Hydrobiol. 87:125–138.Google Scholar
  30. Nalewajko, C., and D. R. S. Lean, 1972. Growth and excretion in planktonic algae and bacteria. J. Phycol. 8:361–366.Google Scholar
  31. Poulet, S. A., and V. Martin-Jezequel, 1983. Relationships between dissolved free amino acids, chemical composition and growth of the marine diatomChaetoceros debile. Mar. Biol. 77:93–100.Google Scholar
  32. Redfield, A. C., 1958. The biological control of Chemical factors in the environnement. Am. Scient. 46:205–221.Google Scholar
  33. Schürmann, P., 1969. Separation of phosphate esters and algal extracts by thin-layer electrophoresis and chromatography. J. Chromatogr. 39:507–509.Google Scholar
  34. Sharp, J. H., 1977. Excretion of organic matter by marine phytoplankton: Do healthy cells do it? Limnol. Oceanogr. 22:381–399.Google Scholar
  35. Søndergaard, M., and L. M. Jensen, 1986. Phytoplankton. In Riemann B. & Søndergaard M. (eds) Carbon dynamics in eutrophic, temperate lakes. Elsevier, New York. 27–126.Google Scholar
  36. Taguchi, S., and E. A. Laws, 1985. Application of a single-cell isolation technique to studies of carbon assimilation by the subtropical silicoflagellateDictyocha perlaevis. Mar. Ecol. Prog. Ser. 23:251–255.Google Scholar
  37. Vallaeys, T., J. Feuillade, and M. Feuillade, 1989. An approach to freshwater cyanobacterial production and excretion: tentative application of a deterministic model. J. Appl. Phycol. 1:345–358.Google Scholar
  38. Watanabe, Y., 1980. A study of the excretion and extracellular products of natural phytoplankton in Lake Nakanuma, Japan. Internat. Revue Ges. Hydrobiol. 65:809–834.Google Scholar
  39. Zygmuntova, J., 1981. Free amino acids in cultures of various algae species. Acta Hydrobiol. 23:283–296.Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • M. Feuillade
    • 1
  • J. Feuillade
    • 1
  • V. Fiala
    • 2
  1. 1.Station d'Hydrobiologie lacustre — I.N.R.A.Cédex — THONON-les-BAINSFrance
  2. 2.Laboratoire du Métabolisme et de la nutrition des Plantes — I.N.R.A.Cédex — VersaillesFrance

Personalised recommendations