pure and applied geophysics

, Volume 117, Issue 1–2, pp 109–123 | Cite as

Mantle heat flow and geotherms for major tectonic units in central Europe

  • Jacek Majorowicz
Regional Heat Flow


The results of seismic measurements along the deep seismic sounding profile VII and terrestrial heat flow measurements used for construction of heat generation models for the crust in the Paleozoic Platform region, the Sudetic Mountains (Variscan Internides) and the European Precambrian Platform show considerable differences in mantle heat flow and temperatures. At the base of the crust variations from 440–510°C in the models of Precambrian Platform to 700–820°C for the Paleozoic Platform and the Variscan Internides (Sudets) are found. These differences are associated with considerable mantle heat flow variations.

The calculated models show mantle heat flow of about 8.4–12.6 mW m−2 for the Precambrian Platform and 31 mW m−2 to 40.2 mW m−2 for Paleozoic orogenic areas. The heat flow contribution originating from crustal radioactivity is almost the same for the different tectonic units (from 33.5 mW m−2 to 37.6 mW m−2). Considerable physical differences in the lower crust and upper mantle between the Precambrian Platform and the adjacent areas, produced by lateral temperature variations, could be expected. On the basis of ‘carbon ratio’ data it can be concluded that the Carboniferous paleogeothermal gradient was much lower in the Precambrian Platform area than in the Paleozoic Platform region.

Key words

Crustal geotherms Moho temperatures Heat flow and crustal thickness Heat flow-age relationship Coalification rank Tectonic units in Poland Heat flow transition zones 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arshavskaya, N., Berzina, I. andLubimova, E. (1972),Geochemical and geothermal model for Pechenga and Ricolatva regions, Geothermics,1, 25–30.Google Scholar
  2. Balling, N. P. (1976),Geothermal models of the crust and upper mantle of the Fennoscandian Shield in South Norway and the Danish Embayment, J. Geophys.42, 237–256.Google Scholar
  3. Bostick, N. H. (1971), Thermal alteration of clastick organic particles as an indicator of contrast and burial metamorphism in sedimentary rocks, Geoscience and Man., Vol. III, Oct. 1.Google Scholar
  4. Crough, S. T. andThompson, G. A. (1976),Thermal model of continental lithosphere, J. Geophys. Res.81, 4857–4862.Google Scholar
  5. Čermak, V. (1975),Temperature-depth profiles in Czechoslovakia and some adjacent areas derived from heat flow measurements, Tectonophysics26, 103–119.Google Scholar
  6. Čermak, V. andJessop, A. M. (1975),Heat flow, heat generation and crustal temperature in Kapuskasing area of the Canadian Shield, Tectonophysics,26, 103–121.Google Scholar
  7. Duczkow, A. andSokolowa, L.,Geotermiceskye issledovanya w Sibiri (Geothermal Investigations in Siberia), (Nauka, Novosibirsk, 1974), pp. 275.Google Scholar
  8. Guterch, A., Materzok, R., Pajchel, J. andPerchuć, K. (1975),Seismic structure of the earth crust along the international profile VII in the light of studies by deep seismic sounding method, Przeglad geol.4, 154–163.Google Scholar
  9. Horai, K. andSimmons, G. (1968),Seismic travel time anomalies due to anomalous heat flow and density, Jour. Geophys. Res.73, 7577–7588.Google Scholar
  10. Hurtig, E. (1975), Untersuchungen zur wärmeflussverteilung in Europe, Gerlands Beitrage zur Geophysik84, 3–4, 247–260.Google Scholar
  11. Hyndman, R. (1968),Heat flow and surface radioactivity measurements in the precambrian shield of western Australia, Phys. Earth Planet. Int.1, 129–135.Google Scholar
  12. Jessop, A. M., Hobart, M. A. andSclater, J. G.,The world heat flow data collection—1975, Geothermal Series, Number 5 (Ottawa, Canada, 1976), 125 pp.Google Scholar
  13. Jones, P. H. (1970),Geothermal resources of the northern Gulf of Mexico basin, Geothermics, Special Issue2, 14–26.Google Scholar
  14. Karstev, A., Vassoevich, N., Geodekian, A., Nerucher, S. andSokolov, V.,The principal stage in the formation of petroleum, inProceedings of the Eight World Petroleum Congress, vol. 4 (Applied Science Publ, London, 1971).Google Scholar
  15. Kutas, R. I. (1972),Investigations of heat flow anomalies in some regions of Ukraine, Geothermics1, 35–39.Google Scholar
  16. Kutas, R. I., Lubimowa, E. A. andSmirnov, J. B.,Heat flow map of the European part of the USSR, KAPG Geophysical Monograph (Akademiai Kiado, Budapest, 1976), pp. 443–449.Google Scholar
  17. Lachenbruch, A. H. (1970),Implication of linear heat flow relation, J. geophys. Res.76, 3852–3810.Google Scholar
  18. Majorowicz, J. (1973a),Heat flow data from Poland, Nature Phys. Sc.243, 105.Google Scholar
  19. Majorowicz, J. (1973b),Heat flow in Poland and its relation to the geological structure, Geothermics2, 24–28.Google Scholar
  20. Majorowicz, J. (1976),Heat flow map of Poland on the background of geothermal field of Europe and some aspects of its interpretation, Acta geoph. pol.24, 147–156.Google Scholar
  21. Marek, S. andZnosko, J.,Tectonic position of Kujawy and Wielkopolska, Biuletyn Inst. Geol., v. 274, (Warszawa, 1974).Google Scholar
  22. Plewa, S. (1967),Measurement results of the surface heat flow on the Polish Territory, Selected Problems of upper mantle investigations in Poland, Publ. Inst. Geophys. Pol. Acad. Sc. (Materialy i Prace)14, 103–114.Google Scholar
  23. Plewa, S. (1976),The new results of surface heat flow investigations of Earth's crust performed in Karpaty Mountains, Publ. Inst. Geophys. Pol. Acad. Sc.A-2 (101), 185–190.Google Scholar
  24. Pollack, M. N. andChapman, D. S. (1977),On the regional variation of heat flow, geotherms, and litospheric thickness, Tectonophysics38, 279–296.Google Scholar
  25. Polyak, B. G. andSmirnov, Ya. B. (1968),Relationship between terrestrial heat flow and the tectonics of continents, Geotectonics4, 205–213.Google Scholar
  26. Rao, R. V. M. andJessop, A. M. (1975),A comparison of thermal characters of shields, Can. Jour. Earth Sc.12, 347–360.Google Scholar
  27. Roy, R. F., Blackwell, D. D. andDecker, E. R.,Continental heat flow, inThe Nature of the Solid (ed. Robertson), (McGraw-Hill, New York, 1971), pp. 506–543.Google Scholar
  28. Rybach, L. (1973),Wärmeproduktionsbestimmungen an Gesteinen der Schweizer Alpen. Beitr. Geol. Schweiz, Geotech. Ser. Lfg. 51.Google Scholar
  29. Rybach, L. (1976),Radioactive heat production in rocks and its relation to other petrophysical parameters, Pure Appl. Geophys.114, 309–317.Google Scholar
  30. Sass, J. (1968),Heat flow and surface radioactivity in Quirke Lake syncline, Ontario, Can. J. Earth Sci.5, 1417–1425.Google Scholar
  31. Slack, P. B. (1974),Variance of terrestrial heat flow between the North American craton and the Canadian Shield, Geol. Soc. Amer. Bull.85, 519–522.Google Scholar
  32. Stegena, L., Géczy, N. andHorvath, F. (1975),Late canozoic evolution of the Panonian Basin, Tectonophysics26, 71.Google Scholar
  33. Swanberg, C. A., Chessman, M. D., Simmons, G., Smithson, S. B., Grönlie, G. andHeier, K. S. (1974),Heat flow-heat generation studies in Norway, Tectonophysics23, 31–48.Google Scholar
  34. Teichmüller, M. andTeichmüller, A.,Geological aspect of coal metamorphism, inCoal and Coal-Bearing Strata (ed. D. G. Murchison), (Oliver and Boyd, Edinburgh-London, 1968).Google Scholar
  35. Wesierska, M. (1973),A study of terrestrial heat flux density in Poland, Publ. Inst. Geophys. Pol. Acad. Sc. (Materialy i Prace)60, 135–144.Google Scholar
  36. Yoder, M. S. andTilley, C. (1962),Origin of basalt magmas, an experimental study of natural and synthetic rock systems, J. Petrol.3, 342–532.Google Scholar

Copyright information

© Birkhäuser Verlag 1978

Authors and Affiliations

  • Jacek Majorowicz
    • 1
  1. 1.Geophysical DepartmentGeological InstituteWarsawPoland

Personalised recommendations