Advertisement

pure and applied geophysics

, Volume 117, Issue 1–2, pp 65–74 | Cite as

Variation of continental mantle heat flow with age. Possibility of discriminating between thermal models of the lithosphere

  • V. M. Hamza
General Geothermics

Abstract

Continental mantle heat flow values are obtained by subtracting the radiogenic heat produced in the lower crust and lithosphere beneath the crust from ‘reduced heat flow values’ reported for various heat flow provinces. The significance of continental mantle heat flow values thus obtained is that they can be considered essentially as representing the residual heat of cooling of the continental lithosphere. A plot of these mantle heat flow values against 1/√t where ‘t’ is the geologic age of the last thermal event suggests a linear trend. It is also found that the recently proposed relationQ=500 (1/√t) for the variation of oceanic heat flowQ (in mW/M2) with aget (in million years) provides a reasonably good fit to the mantle heat flow data. The constant thickness plate model however, is found to be unsatisfactory in explaining the variation of continental mantle heat flow with age.

Key words

Continental mantle heat flow Radiogenic heat Lithosphere cooling Heat flow provinces Thermal model of lithosphere Heat flow-age variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blackwell, D. D. (1971),The thermal structure of the continental crust, inThe Structure and Physical Properties of the Earth's Crust (ed. J. G. Heacock), Am. Geophys. Un. Mono.14, 169–184.Google Scholar
  2. Cermak, V. andJessop, A. M. (1971),Heat flow, heat generation and crustal temperature in the Kapuskasing area of the Canadian shield, Tectonophysics11, 287–303.Google Scholar
  3. Crough, S. T. andThompson, G. A. (1976),Thermal model of continental lithosphere, J. Geophys. Res.81, 4857–4862.Google Scholar
  4. Hamza, V. M. (1973), ‘Vertical distribution of radioactive heat production in the Grenville geological province and the sedimentary sections overlying it’, Unpublished Ph.D. Thesis, University of Western Ontario, London, Canada.Google Scholar
  5. Hamza, V. M. (1976a),Possible extension of oceanic heat flow age relation to continental regions and the thermal structure of continental margins, Anais da Acad. Brasileira de Ciências,48 (Suplemento), 121–131.Google Scholar
  6. Hamza, V. M. (1976b),Heat flow through lower continental and oceanic crust: A unified interpretation of the dependence on tectonic age (Abstract) Bull. Am. Phys. Soc., Series II,21, 832.Google Scholar
  7. Hamza, V. M. (1977),Possible limits on the temperature distributions in the continental lithosphere, Anals da Academia Brasileira de Ciências,49, 287–295.Google Scholar
  8. Hamza, V. M. andVerma, R. K. (1969),The relationship of heat flow with age of basement rocks, Bull. Volcanologique33, 123–152.Google Scholar
  9. Heier, K. S. andAdmams, J. A. S. (1965),Concentration of radioactive elements in deep crustal material, Geochim. Cosmochim. Acta29, 53–61.Google Scholar
  10. Jaeger, J. C. (1970),Heat flow and Radioactivity in Australia, Earth Planet. Sci. Lett.81, 285–292.Google Scholar
  11. Lachenbruch, A. A. (1968),A preliminary geothermal model of the Sierra Nevada, J. Geophys. Res.73, 6977–6988.Google Scholar
  12. Lachenbruch, A. H. (1970),Crustal temperature and heat production: Implications of the linear heat flow relation, J. Geophys. Res.75, 3291–3300.Google Scholar
  13. Lachenbruch, A. H. (1977), ‘High heat flow in the western U.S. and thermal effects of an extending lithosphere’, Paper presented at the IASPEI/IAVCEI Joint Assembly, Durham (England).Google Scholar
  14. Lambert, I. B. andHeier, K. S. (1967),Vertical distribution of Uranium, Thorium and Potassium in the Continental Crust, Geochim. Cosmochim. Acta31, 377–390.Google Scholar
  15. Lister, C. R. B. (1975), ‘The heat flow consequences of the Square-root law of ridge topography’, Paper presented at General Assembly of Int. Union of Geod. and Geophys., Grenoble (France).Google Scholar
  16. Pakiser, L. C. andRobinson, R. (1966),Composition of the continental crust as estimated from seismic observations, inThe Earth Beneath the Continents (eds J. S. Steinhart and T. J. Smith), Am. Geophys. Union Mono.10, 620–626.Google Scholar
  17. Parker, R. L. andOldenburg, D. W. (1973), Thermal Model of Ocean Ridges, Nature Phys. Sci.242, 137–139.Google Scholar
  18. Pollack, H. N. andChapman, D. S. (1977),On the regional variation of heat flow, geotherms and lithospheric thickness, Tectonophys.38, 279–296.Google Scholar
  19. Polyak, B. G. andSmirnov, Ya. B. (1968),Relationship between terrestrial heat flow and the tectonics of continents, Geotectonics4, 205–213.Google Scholar
  20. Rao, R. U. M. andJessop, A. M. (1975),A comparison of the thermal characters of shields, Can. J. Earth Sci.12, 347–360.Google Scholar
  21. Rao, R. U. M., Rao, G. V. andHari Narain (1976),Radioactive heat generation and heat flow in the Indian Shield, Earth Planet. Sci. Lett.30, 57–64.Google Scholar
  22. Roy, R. F., Blackwell, D. D. andBirch, F. (1968),Heat generation of plutonic rocks and continental heat flow provinces, Earth Planet. Sci. Lett.5, 1–12.Google Scholar
  23. Sclater, J. G., Crowe, J. andAnderson, R. N. (1976),On the reliability of oceanic heat flow averages, J. Geophys. Res.81, 2997–3006.Google Scholar
  24. Sclater, J. G. andFrancheteau, J. (1970),The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the earth Geophys. J. Roy. Astron. Soc.20, 509–542.Google Scholar
  25. Sclater, J. G. andParsons, B. (1976),Reply, J. Geophys. Res.81, 4960–4964.Google Scholar
  26. Smithson, S. B. andDecker, E. R. (1974),A continental crustal model and its geothermal implications, Earth Plantet. Sci. Lett.22, 215–225.Google Scholar
  27. Swanberg, C. A. (1972),Vertical distribution of heat generation in the Idaho Batholith, J. Geophys. Res.77, 2508–2514.Google Scholar
  28. Swanberg, C. A. andBlackwell, D. D. (1973),Areal distribution and geophysical significance of heat generation in the Idaho batholith and adjacent intrusions in eastern Oregon and Western Montana, Geol. Soc. Am. Bull.86, 1261–1282.Google Scholar
  29. Swanberg, C. A., Chessman, M. D., Simmons, G., Gronlie, G. andHeier, K. S. (1973),Heat flow-heat generation studies in Norway, Tectonophysics23, 31–48.Google Scholar
  30. Tammemagi, H. Y. andWheildon, J. (1974),Terrestrial heat flow and heat generation in south-west England, Geophys. J. Roy. Astron. Soc.38, 83–94.Google Scholar
  31. Turcotte, D. L. andOxburgh, E. R. (1972),Mantle convection and the new global tectonics, Ann. Rev. Fluid. Mech.,4, 33–68.Google Scholar
  32. Verma, R. K., Hamza, V. M. andPanda, P. K. (1970),Further study of the correlation of heat flow with the age of basement rocks, Tectonophysics10, 301–320.Google Scholar

Copyright information

© Birkhäuser Verlag 1978

Authors and Affiliations

  • V. M. Hamza
    • 1
  1. 1.Instituto Astronômico e GeofisicoU.S.P.São PauloBrasil

Personalised recommendations