pure and applied geophysics

, Volume 57, Issue 1, pp 153–160 | Cite as

On the theory of the axially-symmetric, time-average, state of the atmosphere

  • Barry Saltzman


A possible formal approach to a closed steady-state theory of the mean axially-symmetric variables is outlined. The approach involves alternating iterative solutions of the energy and momentum equations. In these equations the effects of transient eddy phenomena of all frequencies are assumed to be parameterized in terms of the mean symmetric variables.


Atmosphere Momentum Equation Iterative Solution Formal Approach Symmetric Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Adem,On the theory of the general circulation of the atmosphere, Tellus14 (1962), 102.Google Scholar
  2. [2]
    J. Adem,Preliminary computations on the maintenance and prediction of seasonal temperatures in the troposphere, Mo. Weath. Rev.91, (1963), 375.Google Scholar
  3. [3]
    D. R. Davies andM. B. Oakes,On the problem of formulating a realistic model of the general atmospheric circulation, J. Geophys. Res.67 (1962), 3121.Google Scholar
  4. [4]
    F. Defant,Das mittlere meridionale Temperaturprofil in der Troposphäre als Effekt von vertikalen und horizontalen Austauschvorgängen und Kondensationswärme, Arch. Meteor., Geophys. und Bioklim. II [A]2–3 (1950), 184.Google Scholar
  5. [5]
    B. R. Döös,The influence of exchange of sensible heat with the earth's surface on the planetary flow, Tellus14 (1962), 133.Google Scholar
  6. [6]
    A. Eliassen,Slow thermally or frictionally controlled meridional circulations in a circular vortex, Astrophysica Norwegica5 (1951), 19.Google Scholar
  7. [7]
    H.-L. Kuo,Forced and free meridional circulations in the atmosphere, J. Meteor.13 (1956), 561.Google Scholar
  8. [8]
    S. Manabe andF. Möller,On the radiative equilibrium and heat balance of the atmosphere, Mo. Weath. Rev.89 (1961), 503.Google Scholar
  9. [9]
    N. Phillips,The general circulation of the atmosphere: a numerical experiment, Quart J. Roy. Met. Soc.82, (1956), 123.Google Scholar
  10. [10]
    C. Prabhakara,Effects of non-photochemical processes on the meridional distribution and total amount of ozone in the atmosphere, Mo. Weath. Rev.91 (1963), 411.Google Scholar
  11. [11]
    B. Saltzman,Perturbation equations for the time-average state of the atmosphere including the effects of transient disturbances, Geofisica pura e applicata48 (1961), 143.Google Scholar
  12. [12]
    B. Saltzman,Empirical forcing functions for the large-scale mean disturbances in the atmosphere. Geofisica pura e applicata52 (1962), 173.Google Scholar
  13. [13]
    B. Saltzman,A generalized solution for the large-scale, time-average, perturbations in the atmosphere, J. Atmos. Sci.20 (1963), 226.Google Scholar
  14. [14]
    J. Smagorinsky,The dynamical influence of large-scale heat sources and sinks on the quasistationary mean motions of the atmosphere, Quart. J. Roy. Med. Soc.79 (1953), 342.Google Scholar
  15. [15]
    Staff Members, Academia SinicaOn the general circulation over eastern Asia (III), Tellus10 (1958), 299.Google Scholar
  16. [16]
    V. P. Starr,Note concerning the nature of the large-scale eddies in the atmosphere, Tellus5 (1953), 494.Google Scholar
  17. [17]
    R. M. White,The counter-gradient flux of sensible heat in the lower stratosphere, Tellus6 (1954), 177.Google Scholar

Copyright information

© Birkhäuser Verlag 1964

Authors and Affiliations

  • Barry Saltzman
    • 1
  1. 1.The Travelers Research Center, Inc.HartfordUSA

Personalised recommendations