Skip to main content

Advertisement

Log in

Cardiac single-photon emission tomography: Is attenuation correction enough?

  • Editorial
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Roach PJ, Hutton BF, Meikle SR, Bailey DL, Eberl S, McLaughlin AF, Bautovich GJ, Freedman SB, Chaiwatanarat T, Pusuwan P, Cook P. Transmission based quantitative SPELT improves the accuracy of T1-201 myocardial scintigraphy [abstract].Eur J Nucl Med 1993; 20: 917.

    Google Scholar 

  2. Datz FL, Gullberg GT, Zeng GL, Tung C-H, Christian PE, Welch A, Clack R. Application of convergent-beam collimation and simultaneous transmission emission tomography to cardiac single photon emission computed tomography.Sent Nucl Med 1994; 24: 17–37.

    Google Scholar 

  3. Ficaro EP, Fessler JA, Ackermann RJ, Rogers WL, Corbett JR, Schwaiger M. Simultaneous transmission-emission thallium-201 cardiac SPELT: effect of attenuation correction on myocardial tracer distribution.J Nucl Med 1995; 36: 921–931.

    PubMed  Google Scholar 

  4. Bailey DL, Hutton BF, Walker PJ. Improved SPELT using simultaneous emission and transmission tomography.J Nucl Med 1987; 28: 844–851.

    PubMed  Google Scholar 

  5. Tung C-H, Gullberg GT, Zeng GL, Christian PE, Datz FL, Morgan HT. Non-uniform attenuation correction using simultaneous transmission and emission converging tomography.IEEE Trans Nucl Sci 1992; NS-39: 1134–1143.

    Google Scholar 

  6. Tan P, Bailey DL, Meikle SR, Eberl S, Fulton RR, Hutton BF. A scanning line source for simultaneous emission and transmission measurements in SPELT.J Nucl Med 1993; 34: 1752–1760.

    PubMed  Google Scholar 

  7. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography.IEEE Trans Med Imag 1982; 1: 113–122.

    Google Scholar 

  8. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography.J Comput Assist Tomogr 1984; 8: 306–316.

    PubMed  Google Scholar 

  9. King MA, Xia W, deVries DJ, Pan T-S, Dahlberg S, Villegas BJ, Tsui BMW, Ljundberg MH, Morgan HT. A Monte Carlo investigation of artifacts caused by liver uptake in single-photon emission computed tomography perfusion imaging with technetium-99m labeled agents.J Nucl Cardiol 1996; 3: 18–29.

    PubMed  Google Scholar 

  10. Maniawski PJ, Miller SD, Morgan HT. Combined attenuation and scatter correction significantly reduces the effect of extracardiac activity on T1-201 myocardial perfusion SPECT [abstract].J Nucl Med 1996; 37: 214p.

  11. Meikle SR, Hutton BF, Bailey DL. A transmission-dependent method for scatter correction in SPET.J Nucl Med 1994; 35: 360–367.

    PubMed  Google Scholar 

  12. Hutton BF, Osiecki A, Meikle SR. Transmission-based scatter correction of 180 degrees myocardial single-photon emission tomographic studies.Eur J Nucl Med 1996; 23: 1300–1308.

    PubMed  Google Scholar 

  13. Hutton BF, Meikle SR, Osiecki A. Contrast in 180 versus 360 degree attenuation and scatter corrected myocardial SPECT [abstract].J Nucl Med 1995; 36: 51p.

    Google Scholar 

  14. Larsson SA. Gamma camera emission tomography.Acta Radiol Suppl 363 1980; p32.

    Google Scholar 

  15. Chang LT. A method for attenuation correction in radionuclide computed tomography.IEEE Trans Nucl Sci 1978; NS-25: 638–643.

    Google Scholar 

  16. Koral KF, Wang X, Rogers WL. SPECT Compton-scattering correction by analysis of energy spectra.J Nucl Med 1988; 29: 195–202.

    PubMed  Google Scholar 

  17. Gagnon D, Todd-Pokropek A, Arsenault A, Dupras G. Intro-duction to holospectral imaging in nuclear medicine for scatter subtraction.IEEE Trans Med Imag 1989; 8: 245–250.

    Google Scholar 

  18. Ogawa K, Harata Y, Ichihara T, Kubo A. A practical method for position-dependent Compton-scatter correction in single photon emission CT.IEEE Trans Med Imag 1991; 10: 408–412.

    Google Scholar 

  19. King MA, deVries DJ, Pan T-S, Pretorius PH, Case JA. An investigation of the filtering of TEW scatter estimates used to compensate for scatter with ordered subset reconstructions.Proc IEEE Medical Imaging Conference, Anaheim, 1996 (in press).

  20. Frey EC, Tsui BMW. Parameterization of the scatter response function in SPECT imaging using Monte Carlo simulation.IEEE Trans Nucl Sci 1990; NS-37: 1308–1315.

    Google Scholar 

  21. Beekman F, Eijkman E, Viergever M, Born G, Slijpen E. Object shape dependent PSF model for SPECT imaging.IEEE Trans Nucl Sci 1993; NS-40: 31–39.

    Google Scholar 

  22. Frey EC, Lu ZW, Tsui BMW. A fast projector backprojector pair for modeling the asymmetric spatially varying scatter response in SPECT imaging.IEEE Trans Nucl Sci 1993; 40: 1192–1197.

    Google Scholar 

  23. Beekman FJ, Kamphuis C, Viergever MA. Improved SPECT quantitation using fully three-dimensional iterative spatially variant scatter response compensation.IEEE Trans Med Imag 1996; 15: 491–499.

    Google Scholar 

  24. Glick SJ, Hawkins WG, King MA, Penney BC, Soares EJ, Byrne CL. The effect of intrinsic attenuation correction methods on the stationarity of the 3-D modulation transfer function of SPECT.Med Phys 1992; 19: 1105–1112.

    PubMed  Google Scholar 

  25. Knesaurak K, King MA, Glick SJ, Penney BC. Investigation of causes of geometric distortion in 180 degree and 360 degree angular sampling in SPECT.J Nucl Med 1989; 30: 1666–1675.

    PubMed  Google Scholar 

  26. Lewitt RM, Edholm PR, Xia W. Fourier method for correction of depth dependent collimator blurring.Proc SPIE 1989; 1092: 232–243.

    Google Scholar 

  27. Glick SJ, Penney BC, King MA, Byrne CL. Noniterative compensation for the distance dependent detector response and photon attenuation in SPECT imaging.IEEE Trans Med Imag 1994; 13: 363–374.

    Google Scholar 

  28. Green AJ, Begent RH, Bagshaw KD. Maximum likelihood reconstruction incorporating line spread function data.Eur J Nucl Med 1988; 14: 226.

    Google Scholar 

  29. Tsui BMW, Hu HB, Gilland DR, et al. Implementation of simultaneous attenuation and detector response correction in SPECT.IEEE Trans Nucl Sci 1988; 35: 778–783.

    Google Scholar 

  30. Galt JR, Cullom SJ, Garcia EV. SPECT quantification: a simplified method of attenuation and scatter correction for cardiac imaging.J Nucl Med 1992; 33: 2232–2237.

    PubMed  Google Scholar 

  31. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data.IEEE Trans Med Imag 1994; 13: 601–609.

    Google Scholar 

  32. Kamphuis C, Beekman FJ, Viergever MA, van Rijk PP. Accelerated fully 3D SPECT reconstruction using dual matrix ordered subsets [abstract].J Nucl Med 1996; 37: 62p.

    Google Scholar 

  33. King MA, Tsui BMW, Pan T-S, Glick SJ, Soares EJ. Attenuation compensation for cardiac single-photon emission computed tomographic imaging: part 2. Attenuation compensation algorithms.J Nucl Cardiol 1996; 3: 55–63.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutton, B.F. Cardiac single-photon emission tomography: Is attenuation correction enough?. Eur J Nucl Med 24, 713–715 (1997). https://doi.org/10.1007/BF00879656

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00879656

Navigation