Skip to main content
Log in

Nonequilibrium thermodynamics of pressure solution

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

This paper is concerned with the thermodynamic theory of solution and precipitation processes in wet crustal rocks and with the mechanism of steady pressure-solution slip in ‘contact zones,’ such as grain-to-grain contacts, fracture surfaces, and permeable gouge layers, that are infiltrated by a mobile aqueous solution phase. A local dissipation jump condition at the phase boundary is fundamental to identifying the thermodynamic force driving the solution and precipitation process and is used here in setting up linear phenomenological relations to model near-equilibrium phase transformation kinetics. The local thermodynamic equilibrium of a stressed pure solid in contact with its melt or solution phase is governed by Gibbs's relation, which is rederived here, in a manner emphasizing its independence of constitutive assumptions for the solid while neglecting surface tension and diffusion in the solid. Fluid-infiltrated contact zones, such as those formed by rough surfaces, cannot generally be in thermodynamic equilibrium, especially during an ongoing process of pressure-solution slip, and the existing equilibrium formulations are incorrect in overlooking dissipative processes tending to eliminate fluctuations in superficial free energies due to stress concentrations near asperities, defects, or impurities. Steady pressure-solution slip is likely to exhibit a nonlinear dependence of slip rate on shear stress and effective normal stress, due to a dependence of the contact-zone state on the latter. Given that this dependence is negligible within some range, linear relations for pressure-solution slip can be derived for the limiting cases of diffusion-controlled and interface-reaction-controlled rates. A criterion for rate control by one of these mechanisms is set by the magnitude of the dimensionless quantitykδ/2C pD, wherek is the interfacial transfer coefficient, δ is the mean diffusion path length,C p is the solubility at pressurep, andD is the mass diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atkinson, B. K. (1982),Subcritical Crack Propagation in Rocks: Theory, Experimental Results and Applications, J. Struct. Geol.4, No. 1, 41–56.

    Google Scholar 

  • Billia, B., Steinchen, A., Sanfeld, A., andCapella, L. (1982),Thermodynamic Stability of the Solidification Front During Unidirectional Growth from a Melt, J. Non-Equilib. Thermodyn.7, 221–240.

    Google Scholar 

  • Boer, R. B. De, Nagtegaal, P. J. C., andDuyvis, E. M. (1977),Pressure Solution Experiments on Quartz Sand, Geochim. Cosmochim. Acta41, 257–264.

    Google Scholar 

  • Bosworth, W. (1981),Strain-Induced Partial Dissolution of Halite, Tectonophysics78, 509–525.

    Google Scholar 

  • Carslaw, H. S., andJaeger, J. C.,Conduction of Heat in Solids, 2nd ed. (Oxford Univ. Press, Oxford 1959).

    Google Scholar 

  • Chadwick, P.,Continuum Mechanics (J. Wiley, New York 1976).

    Google Scholar 

  • Denbigh, K.,The Principles of Chemical Equilibrium, 3rd ed. (Cambridge Univ. Press 1971).

  • Dennis, S. M., andAtkinson, B. K. (1982),The Influence of Water on the Stress Supported by Experimentally Faulted Westerly Granite, Geophys. J. R. Astr. Soc.71, 285–294.

    Google Scholar 

  • Durney, D. W. (1972),Solution-Transfer, an Important Geological Deformation Mechanism, Nature237, 315–317.

    Google Scholar 

  • Durney, D. W. (1976),Pressure-Solution and Crystallization Deformation, Phil. Trans. R. Soc. Lond.A. 283, 229–240.

    Google Scholar 

  • Edelen, D. G. B. (1977),General Solution of the Dissipation Inequality, J. Non-Equilib. Thermodyn.2, 205–210.

    Google Scholar 

  • Elliott, D. (1973),Diffusion Flow Laws in Metamorphic Rocks, Geol. Soc. Am. Bull.84, 2645–2664.

    Google Scholar 

  • Elliott, D. (1976),The Energy Balance and Deformation Mechanisms of Thrust Sheets, Phil. Trans. R. Soc. Lond.A. 283, 289–312.

    Google Scholar 

  • Engelder, T. (1982),A Natural Example of the Simultaneous Operation of Free-face Dissolution and Pressure Solution, Geochim. Cosmochim. Acta46, 69–74.

    Google Scholar 

  • Eshelby, J. D.,Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics, inInelastic Behavior of Solids (Eds. M. F. Kanninen, W. F. Adler, A. R. Rosenfield, and R. I. Jaffe) (McGraw-Hill, New York 1970), pp. 77–115.

    Google Scholar 

  • Etheridge, M. A., Wall, V. J., andVernon, R. H. (1983),The Role of Fluid Phase During Regional Metamorphism and Deformation, J. Metamorphic Geol.1, 205–226.

    Google Scholar 

  • Gibbs, J. W.,On The Equilibrium of heterogeneous Substances, inThe Scientific Papers of J. Willard Gibbs, Vol. 1 (Longmans, Green, Toronto, Ont. 1906), pp. 55–349.

    Google Scholar 

  • Green, J. W. (1984),Pressure Solution' Creep: Some Causes and Mechanisms, J. Geophys. Res.89, 4313–18.

    Google Scholar 

  • Grinfel'd, M. A. (1982),Phase Transitions of the First Kind in Nonlinear Elastic Materials, Mech. of Solids,17, 92; Engl. transl. of Izv. AN SSSR Mekh. Tv. Tela17, 99.

    Google Scholar 

  • Haase, R.,Transportvorgänge (Steinkopff, Darmstadt 1973).

    Google Scholar 

  • Holland, H. D., andMalinin, S. D.,The Solubility and Occurrence of Non-Ore Minerals, inGeochemistry of Hydrothermal Ore Deposits, 2nd Edition edited by H. L. Barnes (J. Wiley & Sons, New York 1979), pp. 461–508.

    Google Scholar 

  • Hutcheon, I. (1983),Diagenesis 3. Aspects of the Diagenesis of Coarse-grained Siliciclastic Rocks, Geoscience Canada,10, No. 1, 4–14.

    Google Scholar 

  • Kerrich, R. (1978),An Historical Review and Synthesis of Research on Pressure Solution, Zbl. Geol. Palaeont.Teil 1, H.5/6, 512–550.

    Google Scholar 

  • Kirkpatrick, R. J.,Kinetics of Crystallization of Igneous Rocks, inKinetics of Geochemical Processes, Reviews in Mineralogy, Vol. 8 (Mineral. Soc. Am., Washington, D.C. 1981), pp. 321–398.

    Google Scholar 

  • Lacmann, R. (1982),Grenzflächenkinetik, Stofftransport und Wachstumsformen bei der Massenkristallisation, Fortschr. Mineral.60, 155–186.

    Google Scholar 

  • Lasaga, A. C.,Rate Laws of Chemical Reactions, inKinetics of Geochemical Processes, Reviews in Mineralogy, Vol. 8 (Mineral. Soc. Am., Washington, D.C. 1981), pp. 1–68.

    Google Scholar 

  • Lehner, F. K., andHeidug, W. (1983),On the Thermodynamics of Coherent Phase Transitions in Sollduv, Brown Univ. Report.

  • Lemmleyn, G. G., andKliya, M. O. (1960),Distinctive Features of the Healing of a Crack in a Crystal Under Conditions of Declining Temperature, Int. Geol. Review2, 125–128.

    Google Scholar 

  • McClay, K. (1977),A Review of Pressure Solution and Coble Creep, J. Geol. Soc. (London)134, 57–75.

    Google Scholar 

  • Meixner, J., andReik, H. G.,Thermodynamik der irreversiblen Prozesse, inHandbuch der Physik, Vol. III/2, Principles of Thermodynamics and Statistics (ed. S. Flügge) (Springer-Verlag, Berlin 1959), pp. 413–523.

    Google Scholar 

  • Müller, I.,Thermodynamik. Die Grundlagen der Materialtheorie (Bertelsmann Universitätsverlag, Düsseldorf 1973).

    Google Scholar 

  • Paquet, J., François, P., andNedelec, A. (1981),Effect of Partial Melting on Rock Deformation: Experimental and Natural Evidences on Rocks of Granitic Compositions, Tectonophysics78, 545–565.

    Google Scholar 

  • Paterson, M. S. (1973),Nonhydrostatic Thermodynamics and its Geologic Applications, Rev. Geophys. Space Phys.11, 355–389.

    Google Scholar 

  • Prigogine, I.,Thermodynamics of Irreversible Processes, 3rd ed. (Wiley, New York 1976).

    Google Scholar 

  • Raj, R. (1982),Creep in Polycrystalline Aggregates by Matter Transport Through a Liquid Phase, J. Geophys. Res.87, 4731–4739.

    Google Scholar 

  • Raj, R., andAshby, M. F. (1971),On Grain Boundary Sliding and Diffusional Creep, Metall. Trans.2, 1113–1127.

    Google Scholar 

  • Raj, R., andChyung, C. K. (1981),Solution Precipitation Creep in Glass Ceramics, Acta Metall.29, 159–166.

    Google Scholar 

  • Rice, J. R. (1983),Constitutive Relations for Fault Slip and Earthquake Instabilities, Pure Appl. Geophys.,121, 443–475.

    Google Scholar 

  • Rimstidt, J. D., andBarnes, H.L. (1980),The Kinetics of Silica-Water Reactions, Geochim. Cosmochim. Acta44, 1683–1699.

    Google Scholar 

  • Robin, P.-Y. F. (1978),Pressure Solution at Grain-to-Grain Contacts, Geochim. Cosmochim. Acta42, 1383–1398.

    Google Scholar 

  • Roedder, E. (1981),Problems in the Use of Fluid Inclusions to Investigate Fluid-Rock Interactions in Igneous and Metamorphic Processes, Fortschr. Miner.59, 267–302.

    Google Scholar 

  • Ruina, A. (1983),Slip Instability and State Variable Friction Laws, J. Geophys. Res.88, 10,359–10,370.

    Google Scholar 

  • Rutter, E. H. (1983),Pressure Solution in Nature, Theory and Experiment, J. Geol. Soc. London140, 725–740.

    Google Scholar 

  • Rutter, E. H. (1976),The Kinetics of Rock Deformation by Pressure Solution, Phil. Trans. R. Soc. Lond. A283, 203–219.

    Google Scholar 

  • Rutter, E. H., andMainprice, D. H. (1978),The Effect of Water on Stress Relaxation of Faulted and Unfaulted Sandstone, Pure Appl. Geophys.116, 634–654.

    Google Scholar 

  • Rutter, E. H., andMainprice, D. H. (1979),On the Possibility of Slow Fault Slip Controlled by Diffusive Mass Transfer Processes, Gerlands Beitr. Geophysik, Leipzig88, 154–162.

    Google Scholar 

  • Rutter, E. H., andWhite, S. H. (1979),The Microstructures and Rheology of Fault Gouges Produced Experimentally under Wet and Dry Conditions at Temperatures up to 400°C, Bull. Mineral.102, 101–109.

    Google Scholar 

  • Sorby, H. C. (1863),Über Kalkstein-Geschiebe mit Eindrücken, Neues Jahrb. Mineralogie 801–807.

  • Sprunt, E., andNur, A. (1977),Destruction of Porosity through Pressure Solution, Geophysics42, No. 4, 726–741.

    Google Scholar 

  • Truesdell, C., andToupin, R. The Classical Field Theories inHandbuch der Physik, Vol. III/1,Principles of Classical Mechanics and Field Theory edited by S. Flügge (Springer-Verlag, Berlin 1960), pp. 227–793.

    Google Scholar 

  • Trurnit, P. (1967),Pressure Solution Phenomena in Detrital Rocks, Sediment. Geol.2, 89–114.

    Google Scholar 

  • Urai, J. L. (1983),Deformation of Wet Salt Rocks, Ph.D. Thesis, Inst. Earth Sci., Univ. Utrecht.

  • Urai, J. L., Means, W. D., andLister, G. S. (1984),Dynamic Recrystallization of Minerals, in press.

  • Weeks, J. D., andGilmer, G. H.,Dynamics of Crystal Growth, inAdvances in Chemical Physics, Vol. XL (ed. I. Prigogine and S. A. Rice) (Wiley, New York 1979), 157–228.

    Google Scholar 

  • Weyl, P. K. (1959),Pressure Solution and the Force of Crystallization—a Phenomenological Theory, J. Geophys. Res.64, 2001–2025.

    Google Scholar 

  • White, J. C., andWhite, S. H. (1981),On the Structure of Grain Boundaries in Tectonites, Tectonophysics78, 613–628.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehner, F.K., Bataille, J. Nonequilibrium thermodynamics of pressure solution. PAGEOPH 122, 53–85 (1984). https://doi.org/10.1007/BF00879649

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00879649

Key words

Navigation