pure and applied geophysics

, Volume 124, Issue 4–5, pp 659–676 | Cite as

Changes in complex resistivity during creep in granite

  • David A. Lockner
  • James D. Byerlee


A sample of Westerly granite was deformed under constant stress conditions: a pore pressure of 5 MPa, a confining pressure of 10 MPa, and an axial load of 170 MPa. Pore volume changes were determined by measuring the volume of pore fluid (0.01M KClaq) injected into the sample. After 6 days of creep, characterized by accelerating volumetric stain, the sample failed along a macroscopic fault. Measurements of complex resistivity over the frequency range 0.001–300 Hz, taken at various times during creep, showed a gradual increase in both conductivity and permittivity. When analysed in terms of standard induced polarization (IP) techniques, the changing complex resistivity resulted in systematic changes in such parameters as percent frequency effect and chargeability. These results suggest that it may be possible to monitor the development of dilatancy in the source region of an impending earthquake through standard IP techniques.

Key words

Complex resistivity induced polarization creep earthquake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arulanandan, K. andMitchell, J. (1968),Low frequency dielectric dispersion of clay-water-electrolyte systems. Clay and Clay Minerals16, 337–351.Google Scholar
  2. Barsukov, O. M. (1970),Relationship between the electrical resistivity of rocks and tectonics processes. Bull. (Izv) Acad. Sci. U.S.S.R., Earth Physics1, 55.Google Scholar
  3. Barsukov, O. M. andSorokin, O. N. (1973),Variations in apparent resistivity of rocks in the seismically active garm region, Bull. (Izv) Acad. Sci. U.S.S.R., Earth Physics10, 685.Google Scholar
  4. Brace, W. F., Orange, A. S. andMadden, T. R. (1965),The effect of pressure on the electrical resistivity of water-saturated crystalline rocks. J. Geophys. Res.70, 5669–5678.Google Scholar
  5. Brace, W. F. andOrange, A. S. (1966),Electrical resistivity changes in saturated rock under stress, Science153, 1525–1526.Google Scholar
  6. Brace, W. F. andOrange, A. S. (1968a),Further studies of the effects of pressure on electrical resistivity of rocks, J. Geophys. Res.73, 5407–5420.Google Scholar
  7. Brace, W. F. andOrange, A. S. (1968b),Electrical resistivity changes in saturated rocks during fracture and frictional sliding. J. Geophys. Res.73, 1433–1445.Google Scholar
  8. Brace, W. F. (1971),Resistivity of saturated crustal rocks to 40 km based upon laboratory measurements in the structure and physical properties of the Earth's crust, Geophys. Monogr. Ser.14, edited by J. G. Heacock, 243–255, AGU, Washington, D.C.Google Scholar
  9. Brace, W. F. (1975),Dilatancy related electrical resistivity changes in rocks. PAGEOPH113, 207–217.Google Scholar
  10. Cole, K. S. andCole, R. H. (1941),Dispersion and adsorption in dielectrics, I. Alternation current characteristics, J. Chem. Phys.9, 341–351.Google Scholar
  11. Dissado, L. A. andHill, R. M. (1984),Anomalous low-frequency dispersion, J. Chem. Soc. Faraday Trans. 280, 291–319.Google Scholar
  12. Fujii, N. andHamano, Y.,Anisotropic changes in resistivity and velocity during rock deformation. InHigh Pressure Research, Applications in Geophysics (ed. Manghnani, M. H., and Akimoto, S-I.) (Academic Press, Inc., New York 1977) pp. 53–63.Google Scholar
  13. Hadley, K. (1976)Comparison of calculated and observed crack densities and seismic velocities of Westerly granite, J. Geophys. Res.81, 3484–3494.Google Scholar
  14. Hanks, T. C. (1974),Constraints on the dilatancy-diffusion model of the earthquake mechanism. J. Geophys. Res.79, 3023–3025.Google Scholar
  15. Jonscher, A. K. (1978)Low-frequency dispersion in carrier-dominated dielectrics. Philos. Mag. B38, 587–601.Google Scholar
  16. Kranz, R. L. (1979),Crack growth and development during creep of Barre granite, Int. J. Rock Mech. Min. Sci.16, 23–35.Google Scholar
  17. Lockhart, N. C. (1980),Electrical properties and the surface characteristics and structure of clays, I. Swelling clays, J. Colloid and Interface Sci.74, 520–529.Google Scholar
  18. Lockner, D. A. andByerlee, J. D. (1985a),Complex resistivity measurements of confined rocks, J. Geophys. Res.90, 7837–7847.Google Scholar
  19. Lockner, D. A. andByerlee, J. D. (1985b),Complex resistivity of fault gouge and its significance for earthquake lights and induced polarization, Geophys. Res. Lett.12, 211–214.Google Scholar
  20. Madden, T. andCantwell, R. (1967),Induced polarization, a review. Min. Geophys.2, 373–400.Google Scholar
  21. Mazzella, A. andMorrison, H. F. (1974),Electrical resistivity variations associated with earthquakes on the San Andreas fault. Science185, 855–857.Google Scholar
  22. Morrison, H. F., Corwin, R. F. andChang, M. (1977),High-accuracy determination of temporal variations of crustal resistivity. Amer. Geophys. Union Monogr. 20, The Earth's Crust.Google Scholar
  23. Morrison, H. F. andFernandes, R. (1986),Temporal variations in the electrical resistivity of the Earth's crust. J. Geophys. Res.,91, 11618–11628.Google Scholar
  24. Olhoeft, G. R.,Nonlinear electrical properties, In Nonlinear Behavior of Molecules, Atoms and Ions in Electric, Magnetic or Electromagnetic Fields (ed. Neel, L.) (Elsevier, Amsterdam 1979a) pp. 395–410.Google Scholar
  25. Olhoeft, G. R. (1979b),Electrical properties, initial reports on the Petrophysics laboratory, U.S. Geol. Surv. Circ.789, 1–25.Google Scholar
  26. Olhoeft, G. R.,Electrical properties of rocks, InPhysical Properties of Rocks and Minerals, chap. 9 (eds. Touloukian, Y. S., Judd, W. R. and Roy, R. F.) (McGraw-Hill, New York 1980).Google Scholar
  27. Olhoeft, G. R. (1985),Low frequency electrical properties, Geophys.50, 2492–2503.Google Scholar
  28. Parkhomenko, E. I. (1982),Electrical resistivity of minerals and rocks at high temperature and pressure. Rev. Geophys. and Space Phys.20, 193–218.Google Scholar
  29. Sadovsky, M. A., Nersesov, I. L., Nigmatullaev, S. K., Latynina, L. A., Lukk, A. A., Semenov, A. N., Simbireva, I. G., andUlomov, V. I. (1972),The processes preceding strong earthquakes in some regions of Middle Asia. Tectonophysics14, 295–307.Google Scholar
  30. Sumner, J. S.,Principles of Induced Polarization for Geophysical Exploration (Elsevier Scientific Publ. Co., New York 1976) p. 277.Google Scholar
  31. Tapponnier, P. andBrace, W. F. (1976),Development of stress-induced microcracks in Westerly granite. Int. J. Rock Mech. Min. Sci.13, 103–112.Google Scholar
  32. Wait, J. R. (Ed.),Overvoltage Research and Geophysical Applications (Pergamon Press 1959).Google Scholar

Copyright information

© Birkäuser Verlag 1986

Authors and Affiliations

  • David A. Lockner
    • 1
  • James D. Byerlee
    • 1
  1. 1.U.S. Geological SurveyMenlo Park

Personalised recommendations