Advertisement

pure and applied geophysics

, Volume 91, Issue 1, pp 134–147 | Cite as

A new dissipation model based on memory mechanism

  • M. Caputo
  • F. Mainardi
Article

Summary

The model of dissipation based on memory introduced by Caputo is generalized and checked with experimental dissipation curves of various materials.

Keywords

Memory Mechanism Dissipation Model Dissipation Curve Experimental Dissipation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

σ

unidimensional stress

ε

unidimensional strain

Q−1

specific dissipation function

c(t)

creep compliance

m(t)

relaxation modulus

c0

instantaneous compliance

m

equilibrium modulus

ψ(t)

creep function

\(\bar \psi (t)\)

relaxation function

ξ(τ)

spectral distribution of retardation times

\(\bar \xi (\tau )\)

spectral distribution of relaxation times

c*(ω)

complex compliance

m*(ω)

complex modulus

tangδ

loss-tangent

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Kolsky,Stress Waves in Solids (Clarendon Press, Oxford 1953).Google Scholar
  2. [2]
    C. M. Zener,Elasticity and Anelasticity of Metals (Univ. Press, Chicago 1958).Google Scholar
  3. [3]
    T. Meidav,Visoelastic Properties of the Standard Linear Solid, Geophys. Prosp.12 (1964), 80.Google Scholar
  4. [4]
    M. Caputo,Linear Models of Dissipation whose Q is Almost Frequency Independent—II, Geophys. J. R. Astr. Soc.13 (1967), 529.Google Scholar
  5. [5]
    M. Caputo,Elasticità e Dissipazione (Zanichelli, Bologna 1969).Google Scholar
  6. [6]
    D. S. Berry andS. C. Hunter,The Propagation of Dynamic Stresses in Viscoelastic Rods, J. Mech. Phys. Solids4 (1956), 72.Google Scholar
  7. [7]
    A. Erdelyi (Ed),Higher Transcendental Functions (III), (McGraw-Hill, New York 1955).Google Scholar
  8. [8]
    B. Gross,On Creep and Relaxation, J. Appl. Phys.18 (1947), 212.Google Scholar
  9. [9]
    K. Bennewitz andH. Rötger,Über die innere Reibung fester Körper; Absorptionsfrequenzen von Metallen in akustischen Gebiet, Phys. Zeitschr.37 (1936), 578.Google Scholar
  10. [10]
    K. Bennewitz andH. Rötger,Thermische Dämpfung bei Biegeschwingungen, Zeitschr. f. tech. Phys.19 (1938), 521.Google Scholar
  11. [11]
    I. M. Gel'fand andG. E. Shilov,Generalized Functions (I), (Academic Press, New York 1964).Google Scholar

Copyright information

© Birkhäuser Verlag 1971

Authors and Affiliations

  • M. Caputo
  • F. Mainardi
    • 1
  1. 1.Instituto di Fisica-Istituto di GeodesiaUniversity of BolognaBologna(Italy)

Personalised recommendations