pure and applied geophysics

, Volume 91, Issue 1, pp 5–13 | Cite as

A simple statistical estimation procedure for Monte Carlo Inversion in geophysics

  • R. S. Anderssen
  • E. Seneta


This paper examines the use of Monte Carlo Inversion (MCI) as an effective means for inverting ((geo)physical) data. Press, following Keilis-Borok and Yanovskaya, has used it successfully as an independent method for density modelling. However, to-date, no statistical basis for the interpretation of the results determined by it in geophysical applications has been developed. Since its future success and credibility will rest heavily on the development of such a basis, we give a simple statistical estimation procedure which defines in a natural way the procedure which must be used when applying, and interpreting the results obtained from, MCI. In addition, it is shown that MCI complements, rather than competes with, the work of Backus and Gilbert.


Geophysics Statistical Estimation Estimation Procedure Effective Means Independent Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. M. Hammersley andD. C. Handscomb,Monte Carlo Methods (Methuen, London 1964).Google Scholar
  2. [2]
    J. H. Halton,A retrospective and prospective survey of the Monte Carlo Method, SIAM Rev.12 (1970), 1–63.Google Scholar
  3. [3]
    V. I. Keilis-Borok andT. B. Yanovskaya,Inverse problems of seismology, Geophys. J.13 (1967), 223–234.Google Scholar
  4. [4]
    F. Press,Earth models obtained by Monte Carlo Inversion, J. Geophys. Res.73 (1968), 5223–5234.Google Scholar
  5. [5]
    F. Press,Earth models consistent with geophysical data, Phys. Earth Planet Interiors3 (1970), 3–22.Google Scholar
  6. [6]
    R. S. Anderssen,The character of non-uniqueness in the conductivity modelling problem for the Earth, Pure Appl. Geophys.80 (1970), 238–259.Google Scholar
  7. [7]
    G. E. Backus andF. J. Gilbert,Numerical application of a formalism for geophysical inverse problems, Geophys. J.13 (1967), 247–276.Google Scholar
  8. [8]
    G. E. Backus andF. J. Gilbert,The resolving power of gross Earth data, Geophys. J.16 (1968), 169–205.Google Scholar
  9. [9]
    R. A. Smith,A uniqueness theorem concerning gravity fields, Proc. Camb. Phil. Soc.57 (1961), 856–870.Google Scholar
  10. [10]
    A. Celminš,Direkte Verfahren zur Auswertung von Schweremssunggen bei zweidimensionaler Massenverteilung, Geofisica pura e applicata38 (1957), 81–122.Google Scholar
  11. [11]
    M. M. Lavrentiev,Some Improperly Posed Problems of Mathematical Physics, Springer Tracts in Natural Philosophy, No. 11 (Springer-Verlag, Berlin 1967).Google Scholar
  12. [12]
    G. Backus andF. Gilbert,Uniqueness in the inversion of inaccurate gross Earth data, Phil. Trans. Roy. Soc. [Series A]266 (1970), 123–192.Google Scholar
  13. [13]
    R. S. Anderssen,Bounds for conductivity modelling, Earth Planet. Sci. Letters7 (1970), 314–316.Google Scholar
  14. [14]
    J. L. Walsh, J. H. Ahlberg andE. N. Nilson,The Theory of Splines and their Application (Academic Press, 1967).Google Scholar
  15. [15]
    A. M. Mood andF. A. Graybill,Introduction to the Theory of Statistics, 2nd edition (McGraw-Hill, New York 1963).Google Scholar

Copyright information

© Birkhäuser Verlag 1971

Authors and Affiliations

  • R. S. Anderssen
    • 1
  • E. Seneta
    • 1
  1. 1.Australian National UniversityCanberraAustralia

Personalised recommendations