Skip to main content
Log in

Depth of the brittle-ductile transition in a transcurrent boundary zone

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

A model is proposed which describes the boundary zone between two transcurrent plates as a viscoelastic body, with rheological properties changing with depth. In this model, the brittle-ductile transition is defined as the depth at which the time derivative of shear stress changes from positive to negative values. Variations of this depth are studied as functions of geothermal gradient, rheological parameters and strain rate, using a “power law” rheology with exponent ranging from 1 to 4. Stress relaxation in the ductile zone is controlled by a local characteristic time, which depends on petrology, temperature and, in the case of non-Newtonian rheology, on strain rate. The composition and the hydration degree of crustal rocks may also sensibly influence the depth of the brittle-ductile transition. The model predictions are compared with observations regarding the San Andreas, Imperial Valley and North Anatolian Faults: it is found that values ofn from 1 to 3 are more appropriate to reproduce the transition depth inferred by the seismicity distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambraseys, N. N., andZatopek, A. (1969),The Mudurnu Valley, West Anatolia, Turkey, Earthquake of 22 July 1967, Bull. Seismol. Soc. Am.59, 521–589.

    Google Scholar 

  • Ashby, M. F., andVerrall, R. A. (1977),Micromechanisms of Flow and Fracture, and their Relevance to the Rheology of the Upper Mantle, Phil. Trans. R. Soc. Lond.A288, 59–95.

    Google Scholar 

  • Boland, J. N., andTullis, T. E.,Deformation behaviour of wet and dry clinopyroxenite in the brittle to ductile transition region, InMineral and Rock Deformation: Laboratory Studies The Paterson volume, Geophys. Monograph. Ser. 36 (eds. Hobbs, B. E., and Heard, H. C.) (Amer. Geophys. Union, Washington, D.C. 1986) pp. 35–49.

    Google Scholar 

  • Bonafede, M., andDragoni, M. (1982),Implications of Stress Concentration on a Strike-slip Fault in an Elastic Plate Subject to Basal Shear Stress, Geophys. J. R. Astr. Soc.69, 369–382.

    Google Scholar 

  • Brace, W. F., andKohlstedt, D. L. (1980),Limits on Lithospheric Stress Imposed by Laboratory Experiments, J. Geophys. Res.85, 6248–6252.

    Google Scholar 

  • Brown, G. C., andMussett, A. E.,The Inaccessible Earth (George Allen & Unwin, London 1981).

    Google Scholar 

  • Canitez, N., andToksöz, M. N. (1971),Focal Mechanism and Source Depth of Earthquakes from Body and Surface-wave Data, Bull. Seismrol. Soc. Am.61, 1369–1379.

    Google Scholar 

  • Carter, N. L. (1976),Steady State Flow of Rocks, Rev. Geophys. Space Phys.14, 301–353.

    Google Scholar 

  • Chen, W. P., andMolnar, P. (1983),Focal Depth of Intracontinental and Intraplate Earthquakes and their Implications for the Thermal and Mechanical Properties of the Lithosphere, J. Geophys. Res.88, 4183–4214.

    Google Scholar 

  • Christie, J. M., Koch, P. S., andGeorge, R. P. (1979),Flow Law of Quartzite in the α-quartz Field, EOS Trans. Am. Geophys. Union60, 948–949.

    Google Scholar 

  • Das, S., andScholz, C. H. (1983),Why Large Earthquakes do not Nucleate at Shallow Depth, Nature Phys. Sci.305, 621–623.

    Google Scholar 

  • Dewey, J. W. (1976),Seismicity of Northern Anatolia, Bull. Seismol. Soc. Am.,66, 843–868.

    Google Scholar 

  • Doser, D. I., andKanamori, H. (1986),Depth of Seismicity in the Imperial Valley Region (1977–1983) and its Relationship to Heat Flow, Crustal Structure and the October 15, 1979 Earthquake, J. Geophys. Res.91, 675–688.

    Google Scholar 

  • Dragoni, M. (1988),A Model of Interseismic Stress Evolution in a Transcurrent Shear Zone, Tectonophysics149, 265–273.

    Google Scholar 

  • Dragoni, M. (1990),Stress Relaxation at the Lower Dislocation Edge of Great Shallow Earthquakes, Tectonophysics179, 113–119.

    Google Scholar 

  • Dragoni, M., Bonafede, M., andBoschi, E. (1986),Shallow Earthquakes in a Viscoelastic Shear Zone with Depth-dependent Friction and Rheology, Geophys. J. R. Astr. Soc.86, 617–633.

    Google Scholar 

  • Erdik, M., Doyuran, V., Akkas, N. andGülkan, P. (1985),A Probabilistic Assessment of the Seismic Hazard in Turkey, Tectonophysics117, 295–344.

    Google Scholar 

  • Ergünay, O., andZschau, J.,Introduction to the Turkish-German earthquake research project, InTurkish-German Earthquake Research Project (eds. Ergünay, O., and Zschau, J., 1989).

  • Hansen, F. D., andCarter, N. L. (1982),Creep of Selected Crustal Rocks at 1000 MPa EOS Trans. Am. Geophys. Union63, 437.

    Google Scholar 

  • Jackson, J., andMcKenzie, D. (1984),Active Tectonics of the Alpine-Himalayan Belt Between Western Turkey and Pakistan, Geophys. J. R. Astr. Soc.77, 185–264.

    Google Scholar 

  • Jaoul, O., Tullis, J. andKronenberg, A. (1984),The Effect of Varying Water Content on the Creep Behavior of Heavitree Quartzite, J. Geophys. Res.89, 4298–4312.

    Google Scholar 

  • Kirby, S. H. (1977),State of Stress in the Lithosphere: Inferences from the Flow Laws of Olivine, Pure Appl. Geophys.115, 261–274.

    Google Scholar 

  • Kirby, S. H. (1985),Rock Mechanics Observations Pertinent to the Rheology of the Continental Lithosphere and the Localization of Strain along Shear Zones, Tectonophysics119, 1–27.

    Google Scholar 

  • Kirby, S. H., andKronenberg, A. K. (1984),Deformation of Clinopyroxenite: Evidence for a Transition in Flow Mechanisms and Semibrittle Behaviour, J. Geophys. Res.89, 3177–3192.

    Google Scholar 

  • Kirby, S. H., andKronenberg, A. K. (1987),Rheology of the Lithosphere: Selected Topics, Rev. Geophys.25, 1219–1244.

    Google Scholar 

  • Koch, P. S., Christie, J. M., andGeorge, R. P. (1980),Flow Law of Wet Quartzite in the α-quartz Field, EOS Trans. Am. Geophys. Union61, 376.

    Google Scholar 

  • Kronenberg, A. K., andTullis, J. (1984),Flow Strengths of Quartz Aggregates: Grain Size and Pressure Effects due to Hydrolytic Weakening, J. Geophys. Res.89, 4281–4297.

    Google Scholar 

  • Kusznir, N. J., andPark, R. G. (1984),Intraplate Lithosphere Deformation and the Strength of the Lithosphere, Geophys. J. R. Astr. Soc.79, 513–538.

    Google Scholar 

  • McKenzie, D. (1972),Active Tectonics of the Mediterranean Region, Geophys. J. R. Astr. Soc.30, 109–185.

    Google Scholar 

  • Meissner, R., andStrehlau, J. (1982),Limits of Stresses in Continental Crust and their Relations to the Depth-frequency Distribution of Shallow Earthquakes, Tectonics,1, 73–89.

    Google Scholar 

  • Prescott, W. H., andNur, A. (1981),The Accommodation of Relative Motion at Depth on the San Andreas Fault System in California, J. Geophys. Res.86, 999–1004.

    Google Scholar 

  • Savage, J. C., andBurford, R. O. (1973),Geodetic Determination of Relative Plate Motion in Central California, J. Geophys. Res.78, 832–845.

    Google Scholar 

  • Savage, J. C., andPrescott, W. H. (1978),Asthenosphere Readjustment and the Earthquake Cycle, J. Geophys. Res.83, 3369–3376.

    Google Scholar 

  • Shelton, G., andTullis, J. A. (1981),Experimental Flow Laws for Crustal Rocks, EOS Trans. Am. Geophys. Union62, 396.

    Google Scholar 

  • Sibson, R. H. (1982),Fault Zone Models, Heat Flow, and the Depth Distribution of Earthquakes in the Continental Crust of the United States, Bull. Seismol. Soc. Am.72, 151–163.

    Google Scholar 

  • Sibson, R. H. (1984),Roughness at the Base of the Seismogenic Zone: Contributing Factors, J. Geophys. Res.89, 5791–5799.

    Google Scholar 

  • Strehlau, J.,A discussion of the depth extent of rupture in large continental earthquakes InEarthquake Source Mechanics (Am. Geophys. Union, Washington 1986) pp. 131–145.

    Google Scholar 

  • Tezcan, A. K. (1979),Geothermal studies, their present status and contribution to heat flow contouring in Turkey, InTerrestrial Heat Flow in Europe (eds. Cêrmàk V., and Rybach, L.) (Springer Verlag, Berlin 1979).

    Google Scholar 

  • Toksöz, M. N., Nábêlek, J., andArpat, E. (1978),Source Properties of the 1976 Earthquake in East Turkey: A Comparison of Field Data and Teleseismic Results, Tectonophysics49, 199–205.

    Google Scholar 

  • Toksöz, M. N., Shakal, A. F. andMichael, A. J. (1979),Space-time Migration of Earthquakes along the North Anatolian Fault Zone and Seismic Gaps, Pure Appl. Geophys.117, 1258–1270.

    Google Scholar 

  • Tullis, J., Snoke, A. W., andTodd, V. R. (1982),Significance and Petrogenesis of Mylonitic Rocks, Geology10, 227–230.

    Google Scholar 

  • Turcotte, D. L., andSpence, D. A. (1974),An Analysis of Strain Accumulation on a Strike-slip Fault, J. Geophys. Res.79, 4407–4412.

    Google Scholar 

  • Wilson, D. S. (1989),Deformation of the So-called Gorda Plate, J. Geophys. Res.94, 3065–3075.

    Google Scholar 

  • Yuen, D. A., Fleitout, L., Schubert, G., andFroidevaux, C. (1978),Shear Deformation Zones along Major Transform Faults and Subducting Slabs, Geophys. J. R. Astr. Soc.54, 93–120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragoni, M., Pondrelli, S. Depth of the brittle-ductile transition in a transcurrent boundary zone. PAGEOPH 135, 447–461 (1991). https://doi.org/10.1007/BF00879474

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00879474

Key words

Navigation