pure and applied geophysics

, Volume 142, Issue 2, pp 273–293 | Cite as

Statistical distribution of natural fractures and the possible physical generating mechanism

  • F. K. Boadu
  • L. T. Long


We have fitted field measurements of fracture spacings (from the vicinity of Lake Strom Thurmond, Georgia, U.S.A.) to the Weibull, Schuhmann and fractal distributions. The fracture spacings follow a fractal and Weibull distribution which implies that they were formed as a result of a repetitive fragmentation process. The limited variation of the fracture density with orientation in the study area suggests that the stress distribution generating these fractures may be uniform.

Key words

Fractal Weibull distribution fracturing stress distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allègre, C. J., Le Mouel, J. L., andProvost, A. (1982),Scaling Rules in Rock Fracture and Possible Implications for Earthquake Prediction, Nature,297, 47–49.Google Scholar
  2. Barton, C. A., andZoback, M. D. (1992),Self-similar Distribution and Properties of Macroscopic Fractures at Depth in Crystalline Rock in the Cajon Pass Scientific Drill Hole, J. Geophys. Res.97, 5181–5200.Google Scholar
  3. Bednar, J. B., andWatt, T. L. (1982),Alpha-trimmed Means and their Relationship to Median Filters, submitted to IEEE Trans. on ASSP.Google Scholar
  4. Bednar, J. B. (1983),Applications of Median Filtering to Deconvolution, Pulse Estimation and Statistical Editing of Seismic Data, Geophys.48, 1598–1610.Google Scholar
  5. Boadu, F. K., andLong, T. L. (1993),The Fractal Character of Fracture Spacing and RQD, Int. J. Rock Mech. Min. Sci. and Geomechanics, Abstract (in press).Google Scholar
  6. Brown, W. K., Karp, R. R., andGrady,D. Z. (1983),Fragmentation of the Universe, Astrophys. and Space Science94, 401–412.Google Scholar
  7. Bury, K. V.,Statistical Models in Applied Sciences (Wiley, New York 1975).Google Scholar
  8. Crampin, S. (1978),Seismic-wave Propagation through a Cracked Solid: Polarization as a Possible Dilatancy Diagnostic, Geophys. J. Roy. Astron. Soc.53, 467–496.Google Scholar
  9. Crampin, S., McGonie, R., andBamford, D. (1980),Estimating Crack Parameters from Observations of P-wave Velocity Anisotropy, Geophys.45, 345–360.Google Scholar
  10. Epstein, B. (1947),The Mathematical Description of Certain Breakage Mechanisms Leading to the Logarithmico-normal Distribution, J. Franklin Inst.244, 471–477.Google Scholar
  11. Gilvarry, J. J., andBergstrom, B. H. (1962),Fracture of Brittle Solids III. Experimental Results on the Distribution of Fragment Size in Single Fracture, J. Appl. Phys.33, 3214–3217.Google Scholar
  12. Gilvarry, J. J. (1961),Fracture of Brittle Solids. I. Distribution Function for Fragment Size in Single Fracture (Theoretical), J. Appl. Phys.32, 391–399.Google Scholar
  13. Goupilland, P. L. (1991),The Role of Chaotic Dynamics and Fractal Geometry in Exploration, Leading Edge10, 25–28.Google Scholar
  14. Griffith, L. (1943),A Theory of the Size Distribution of Particles in a Comminuted System, Can. J. Res.21a, 57–64.Google Scholar
  15. Hartman, W. K. (1969),Terrestrials, Lunar and Interplanetary Rock Fragmentation, Icarus10, 201–213.Google Scholar
  16. LaPointe, P. R. (1988),A Method to Characterize Fracture Density and Connectivity through Fractal Geometry, Int. J. Rock Mech. Min. Sci. and Geomech., Abstr.25, 421–429.Google Scholar
  17. Mandelbrot, B. B.,The Fractal Geometry of Nature (Freeman, San Francisco 1982).Google Scholar
  18. Matsushita, M. (1985),Fractal Viewpoint of Fracture and Accretion, J. Phys. Soc. Japan54, 857–860.Google Scholar
  19. Poulton, M. M., Mojtabai, N., andFarmer, I. W. (1990),Scale Invariant Behavior of Massive and Fragmented Rock, Int. J. Rock Mech. Min. Sci. and Geomech., Abstr.27, 219–221.Google Scholar
  20. Press, W. H., Flannery, B. P., Teuskolsky, S. A., andVetterling, W. T.,Numerical Recipe (Cambridge University Press., 1986).Google Scholar
  21. Priest, S. D., andHudson, J. A. (1981),Estimation of Discontinuity Spacing and Trace Length Using Scanline Surveys, Int. J. Rock. Mech. Min. Sci. and Geomech., Abstr.18, 183–197.Google Scholar
  22. Rosin, P., andRammler, E. (1933),Regularities in the Size Distribution of Cement Particles, J. Inst. Fuel7, 29–33.Google Scholar
  23. Rouleau, A., andGale, J. E. (1985),Statistical Characterization of the Fracture System in the Stripa Granite, Sweden, Int. J. Rock Mech. Min Sci. and Geomechanics, Abstr.22, 353–367.Google Scholar
  24. Schuhmann, R. (1940),Principles of Comminution, I. Size Distribution and Surface Calculations, AIME, Technical Publication 1189.Google Scholar
  25. Seeburger, D. A., andZoback, M. D. (1982),The Distribution of Natural Fractures and Joints at Depth in Crystalline Rock, J. Geophys. Res.87, 5517–5534.Google Scholar
  26. Sen, Z., andKazi, A. (1984),Discontinuity Spacing and RQD Estimates from Finite Length Scanlines, Int. J. Rock. Mech. Min. Sci. and Geomech., Abstr.18, 183–187.Google Scholar
  27. Steacy, S. J., andSammis, C. G. (1992),Damage Mechanics Model for Fault Zone Friction, J. Geophys. Res.97, 587–594.Google Scholar
  28. Stephens, M. A.,Tests based on EDF statistics in goodness-of-fit techniques. InGoodness-of-fit Techniques (D'Agostino, R. B., and Stephens, M. A. eds.) (Marcel Dekker Inc., New York, 1986).Google Scholar
  29. Turcotte, D. L. (1986),Fractals and Fragmentation, J. Geophys. Res.91, 1921–1926.Google Scholar
  30. Velde, B., Dubois, J., Moore, D., andTouchard, G. (1991),Fractal Patterns of Fractures in Granites, Earth Planet. Sci. Lett.104, 25–35.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • F. K. Boadu
    • 1
  • L. T. Long
    • 1
  1. 1.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations