Skip to main content
Log in

Self-affine growth pattern of earthquake rupture zones

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Data from 41 moderate and large earthquakes have been used to derive a scaling law for fault parameters. Fault lengthL, widthW and areaS are empirically related byLS andWS β where 0.6<α<0.7, 0.3<β<0.4 and α+β=1. These relations indicate that the growth pattern of earthquake rupture zones is statistically self-affine. It is also found that these relations are similar to the relation derived from a diffusion-limited aggregation (DLA) model with anisotropic sticking probability. This suggests that a modified DLA model could describe the evolution of earthquake rupture zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allègre, C. J., Le Mouel, J. L., andProvost, A. (1982),Scaling Rules in Rock Fracture and Possible Implications for Earthquake Prediction, Nature297, 47–49.

    Google Scholar 

  • Aviles, C. A., Scholz, C. H., andBoatwright, J. (1987),Fractal Analysis Applied to Characteristic Segments of the San Andreas Fault, J. Geophys. Res.92, 331–344.

    Google Scholar 

  • Ball, R. C., Brady, R. M., Rossi, G., andThompson, B. R. (1985),Anisotropy and Cluster Growth by Diffusion-limiting Aggregation, Phys. Rev. Lett.55, 1406–1409.

    Google Scholar 

  • Brown, S. R., andScholz, C. H. (1985),Broad Bandwidth Study of the Topography of Natural Rock Surfaces, J. Geophys. Res.90, 12575–12582.

    Google Scholar 

  • Chelidze, T. (1993),Fractal Damage Mechanics of Geomaterials, Terra Nova5, 421–437.

    Google Scholar 

  • Dambara, T. (1966),Vertical Movements of the Earth's Crust in Relation to the Matsushiro Earthquake, J. Geodet. Soc. Japan (Sokuchi Gakkai Shi)12, 18–45 (in Japanese with English abstract).

    Google Scholar 

  • England, A. H.,Complex Variable Methods in Elasticity (Clowes, London 1971).

    Google Scholar 

  • Feder, J.,Fractals (Plenum Press, New York 1988).

    Google Scholar 

  • Fernandez, L., Guinea, F., andLouis, E. (1988),Random and Dendritic Patterns in Crack Propagation, J. Phys. A: Math. Gen.21, L301-L305.

    Google Scholar 

  • Geller, R. (1976),Scaling Relations for Earthquake Source Parameters and Magnitude, Bull. Seismol. Soc. Am.66, 1501–1523.

    Google Scholar 

  • Gray, D. M. (1961),Interrelationships of Watershed Characteristics, J. Geophys. Res.66, 1215–1223.

    Google Scholar 

  • Hack, J. T. (1957),Studies of Longitudinal Stream Profiles in Virginia and Maryland, U.S.G.s. Prof. Paper294B, 45–97.

    Google Scholar 

  • Hatori, T. (1963),Directivity of Tsunamis, Bull. Earthq. Res. Inst.41, 61–81.

    Google Scholar 

  • Herrmann, H. J.,Fractures. InFractals and Disordered Systems (Bunde, A. and Havlin, S. eds.) (Springer-Verlag, Berlin 1991) pp. 175–205.

    Google Scholar 

  • Hinrichsen, E. L., Hansen, A., andRoux, S. (1989),A Fractal Growth Model, Europhys. Lett.8, 1–7.

    Google Scholar 

  • Hirata, M. (1931),Experimental Studies on Form and Growth of Cracks in Glass Plate, Sc. Pap. Z.P.C.R.16, 182–194.

    Google Scholar 

  • Horton, R. E. (1945),Erosional Development of Streams and their Drainage Basins; Hydrophysical Approach to Quantitative Morphology, Bull. Geol. Soc. Am.56,275–370.

    Google Scholar 

  • Hull, J. (1988),Thickness-displacement Relationships for Deformation Zones, J. Struct. Geol.10, 431–435.

    Google Scholar 

  • Kanamori, H., andAnderson, D. L. (1975),Theoretical Basis of Some Empirical Relations in Seismology, Bull. Seismol. Soc. Am.65, 1073–1095.

    Google Scholar 

  • King, G. (1983),The Accommodation of Large Strains in the Upper Lithosphere of the Earth and Other Solids by Self-similar Fault Systems: The Geometrical Origin of b Values, Pure and Appl. Geophys.121, 761–815.

    Google Scholar 

  • Kondoh, H., andMatsushita, M. (1986),Diffusion-limited Aggregation with Anisotropic Sticking Probability: A Tentative Model for River Networks, J. Phys. Soc. Japan55, 3289–3292.

    Google Scholar 

  • Louis, E., andGuinea, F. (1987),The Fractal Nature of Fracture, Europhys. Lett.3, 871–877.

    Google Scholar 

  • Louis, E., Guinea, F., andFlores, F.,The fractal nature of fracture. InFractals in Physics (Pietronero, L. and Tosatti, E., eds.) (Elsevier Sciences Publishers B.V. 1986) pp. 177–180.

  • Main, I. G., Peacock, S., andMeredith, P. G. (1990),Scattering Attenuation and the Fractal Geometry of Fracture Systems, Pure and Appl. Geophys.133, 283–304.

    Google Scholar 

  • Mandelbrot, B. B.,The Fractal Geometry of Nature, (W. H. Freeman, New York 1982).

    Google Scholar 

  • Mandelbrot, B. B., Passoja, D. E., andPaullay, A. J. (1984),Fractal Character of Fracture Surfaces of Metals, Nature308, 721–722.

    Google Scholar 

  • Matsuda, T. (1975),Magnitude and Recurrence Interval of Earthquake from a Fault, J. Seismol. Soc. Japan (ZISIN)28, 269–283 (in Japanese with English abstract).

    Google Scholar 

  • Matsushita, M., Family, F., andHonda, K. (1987),Scating Theory for the Anisotropic Behavior of Generalized Diffusion-limited Aggregation Clusters in Two Dimensions, Physical Review A36, 3518–3521.

    Google Scholar 

  • Meakin, P. (1988),Simple Models for Crack Growth, Crystal Prop. Prep.17 and18, 1–54.

    Google Scholar 

  • Meakin, P. (1991),Models for Material Failure and Deformation, Science252, 226–234.

    Google Scholar 

  • Meakin, P., andFamily, F. (1986),Diverging Length Scales in Diffusion Aggregation, Phys. Rev. A34, 2558–2560.

    Google Scholar 

  • Meakin, P., Li, G., Sander, L. M., Louis, E., andGuinea, F. (1989),A Simple Two-dimensional Model for Crack Propagation, J. Phys. A: Math. Gen.22, 1393–1403.

    Google Scholar 

  • Mogi, K. (1962),The Fracture of a Semi-infinite Body Caused by an Inner Stress Origin and its Relation to the Earthquake Phenomena (First paper), Bull. Earthq. Res. Inst.40, 815–829.

    Google Scholar 

  • Mogi, K. (1967),Earthquakes and Fractures, Tectonophysics5, 35–55.

    Google Scholar 

  • Nagahama, H. (1991),Fracturing in the Solid Earth, Sci. Rep., Tohoku Univ., 2nd ser. (Geol.)61, 103–126.

    Google Scholar 

  • Nagahama, H. (1993),Fractal Fragment Size Distribution for Brittle Rocks, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.30, 469–471.

    Google Scholar 

  • Nagahama, H.,Scaling laws of fragmentation. InFractals and Dynamic Systems in Geoscience (Kruhl, J. H., ed.) (Springer-Verlag, Berlin 1994).

    Google Scholar 

  • Nagahama, H., andYoshii, K. (1993),Fractal Dimension and Fracture of Brittle Rocks, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.30, 173–175.

    Google Scholar 

  • Power, W. L., Tullis, T. E., Brown, S. R., Boitnott, G. N., andScholz, C. H. (1987),Roughness of Natural Fault Surfaces, Geophys. Res. Lett.14, 29–32.

    Google Scholar 

  • Power, W. L., Tullis, T. E., andWeeks, J. D. (1988),Roughness and Wear During Brittle Faulting, J. Geophys. Res.93, 15268–15278.

    Google Scholar 

  • Ranalli, G. (1977),Correlation between Length and Offsets in Strike-slip Faults, Tectonophysics37, T1-T7.

    Google Scholar 

  • Rossi, G., Thompson, B. R., Ball, R. C., andBrady, R. M.,Cone angle picture and anisotropy in DLA cluster growth. InFractals in Physics (Pietronero, L. and Tosatti, E., eds.) (Elsevier Science Publishers B.V. 1986) pp. 231–236.

  • Sander, L. M.,Continuum DLA; Random fractal growth generated by a deterministic model. InFractals in Physics (Pietronero, L. and Tosatti, E., eds.) (Elsevier Science Publishers B. V. 1986) pp. 241–246.

  • Scholz, C. H. (1982),Scaling Laws for Large Earthquakes: Consequences for Physical Models, Bull. Seismol. Soc. Am.72, 1–14.

    Google Scholar 

  • Scholz, C. H., andAviles, C. A.,The fractal geometry of faults and faulting. InEarthquake Source Mechanics, Geophysical Monogr. 37 (Das, S., Boatwright, J., and Scholz, C. H., eds.) pp. 147–155 (Maurice Ewing, 6, AGU, Washington D.C. 1986).

    Google Scholar 

  • Sornette, D., Davy, P., andSornette, A. (1990),Structuration of the Lithosphere in Plate Tectonics as a Self-organized Critical Phenomenon, J. Geophys. Res.95, 17353–17361.

    Google Scholar 

  • Taguchi, Y. (1989),Fracture Propagation Governed by the Laplace Equation, PhysicaA 156, 741–755.

    Google Scholar 

  • Takayasu, H. (1985),A Deterministic Model of Fracture, Prog. Theor. Phys.74, 1343–1345.

    Google Scholar 

  • Takayasu, H.,Pattern formation of dendritic fractals in fracture and electric breakdown. InFractals in Physics (Pietronero, L. and Tosatti, E., eds.) (Elsevier Science Publishers B. V. 1986) pp. 181–184.

  • Thompson, B. R., Rossi, G., Ball, R. C., andBrady, R. M.,Growth of anisotropic DLA clusters. InFractals in Physics (Pietronero, L. and Tosatti, E., eds.) (Elsevier Science Publishers B. V. 1986) pp. 237–240.

  • Tsuboi, C. (1956),Earthquake Energy, Earthquake Volume, Aftershock Area, and Strength of the Earth's Crust, J. Phys. Earth4, 63–66.

    Google Scholar 

  • Utsu, T., andSeki, A. (1955),A Relation between the Area of Aftershock Region and the Energy, J. Seismol. Soc. Japan (ZISIN)7, 233–240 (in Japanese with English abstract).

    Google Scholar 

  • Watterson, J. (1986),Fault Dimensions, Displacements and Growth, Pure and Appl. Geophys.124, 365–373.

    Google Scholar 

  • Witten, T. A., andSander, L. M. (1983),Diffusion-limited Aggregation, Phys. Rev.B 27, 5686–5697.

    Google Scholar 

  • Wyss, M., andBrune, J. N. (1968),Seismic Moment., Stress, and Source Dimensions for Earthquakes in the California-Nevada Region, J. Geophys. Res.73, 4681–4694.

    Google Scholar 

  • Xie, H.,Fractals in Rock Mechanics (A. A. Balkema, Rotterdam 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagahama, H. Self-affine growth pattern of earthquake rupture zones. PAGEOPH 142, 263–271 (1994). https://doi.org/10.1007/BF00879303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00879303

Key words

Navigation