Skip to main content
Log in

Interactions of a new beta-blocker, celiprolol, with the calcium antagonists, diltiazem and nifedipine, on atrioventricular conduction

  • Calcium Antagonists
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

The influence of a new beta-blocker, celiprolol, on the direct dromotropic effects of the Ca antagonists, diltiazem and nifedipine, on atrioventricular (AV) conduction was estimated in the canine isolated, blood-perfused AV node preparation. Diltiazem (1–10 µg) and nifedipine (0.3–3 µg) injected i.a. into the AV node artery dose dependently prolonged the atrio-His (AH) interval (5–39 msec and 7–51 msec) in the AV mode preparation. When celiprolol (1 and 10 mg/kg) was given i.v. in the support dog, the AH interval in the AV node preparation was transiently shortened and then maintained constant as a control. These doses of i.v. celiprolol completely abolished the isoproterenol-induced decrease in the AH interval (28 msec at 0.03 µg, i.a.) and AV nodal tachycardia. In the presence of celiprolol, the same doses of i.a. diltiazem and nifedipine increased the AH interval by the same amounts (6–43 msec and 8–53 msec) as the control. The incidence of second degree AV conduction block produced by diltiazem (2 in 5 AV node preparations at 10 µg) and nifedipine (2 in 6 preparations at 3 µg) was not changed by celiprolol. In the second experiments, diltiazem (30–300 µg/kg) and nifedipine (3–30 µg/kg), given i.v. in an open-chest in situ vagotomized dog, dose dependently increased AV conduction time (AVCT; 2–30 msec and 1–12 msec). Celiprolol 1 and 10 mg/kg i.v., which suppressed the isoproterenol-induced decrease in AVCT (32 msec at 0.3 µ/kg i.v.) and AV nodal tachycardia (4 in 6 in situ hearts), potentiated the prolongation of AVCT by the same doses of diltiazem (11–50 msec) and nifedipine (3–40 msec). The incidence of second degree AV conduction block produced by i.v., diltiazem (1 in 5 in situ hearts at 300 µg/kg) and nifedipine (0 in 6 in situ hearts at 30 µg/kg) was aggravated (4 in 5 and 3 in 6 in situ hearts) after i.v. celiprolol. These results indicate that although celiprolol does not affect thedirect negative dromotropic effects of the Ca antagonists, AV block could easily be produced when celiprolol eliminates tonic adrenergic influences in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Opie LH, Jee L, White D. Antihypertensive effects of nifedipine combined with cardioselective beta-adrenergic receptor antagonism by atenolol.Am Heart J 1982;104:606–612.

    Google Scholar 

  2. Hung J, Lamb IH, Connolly SJ, Jutzy KR, Goris ML, Schroeder JS. The effect of diltiazem and propranolol, alone and in combination, on exercise performance and left ventricular function in patients with stable effort angina: A double-blind, randomized, and placebo-controlled study.Circulation 1983;68:560–567.

    Google Scholar 

  3. Brouwer RM, Follath F, Bueler FR. Review of the cardiovascular adversity of the calcium antagonist beta-blocker combination: Implications for antihypertensive therapy.J Cardiovasc Pharmacol 1985;7(Suppl 4):S38-S44.

    Google Scholar 

  4. Strauss WE, Parisi AF. Combined use of calcium-channel and beta-adrenergic blockers for the treatment of chronic stable angina: Rationale, efficacy, and adverse effects.Ann Intern Med 1988;109:570–581.

    Google Scholar 

  5. Packer M. Combined beta-adrenergic and calcium-entry blockade in angina pectoris.N Engl J Med 1989;320:709–718.

    Google Scholar 

  6. Taira N. Effects of diltiazem and other calcium-antagonists on cardiac functions in blood-perfused dog-heart preparations. In: Bing RJ, ed.New Drug Therapy with a Calcium Antagonist, Diltiazem Hakone Symposium '78 Amsterdam: Excerpta Medica, 1979:91–103.

    Google Scholar 

  7. Kawai C, Konishi T, Matsuyama E, Okazaki H. Comparative effects of three calcium antagonists, diltiazem, verapamil and nifedipine, on the sinoatrial and atrioventricular nodes: Experimental and clinical studies.Circulation 1981;63:1035–1042.

    Google Scholar 

  8. Mitchell LB, Schroeder JS, Mason JW. Comparative clinical electrophysiologic effects of diltiazem, verapamil and nifedipine: A review.Am J Cardiol 1982;49:629–635.

    Google Scholar 

  9. Ishikawa T, Imamura T, Koiwaya Y, Tanaka K. Atrioventricular dissociation and sinus arrest induced by oral diltiazem.N Engl J Med 1983;309:1124–1125.

    Google Scholar 

  10. Rozanski JJ, Zaman L, Castellanos A. Electrophysiologic effects of diltiazem hydrochloride on supraventricular tachycardia.Am J Cardiol 1982;49:621–628.

    Google Scholar 

  11. Strauss WE, Parisi AF. Superiority of combined diltiazem and propranolol therapy for angina pectoris.Circulation 1985;71:951–957.

    Google Scholar 

  12. Boden WE, Bough EW, Reichman MJ, et al. Beneficial effects of high-dose diltiazem in patients with persistent effort angina on β-blockers and nitrates: A randomized, double-blind, and placebo-controlled cross-over study.Circulation 1985;71:1197–1205.

    Google Scholar 

  13. Kenny J, Kiff P, Holmes J, Jewitt DE. Beneficial effects of diltiazem and propranolol, alone and in combination, in patients with stable angina pectoris.Br Heart J 1985;53:43–46.

    Google Scholar 

  14. Hossack KF. Conduction abnormalities due to diltiazem.N Engl J Med 1982;307:953–954.

    Google Scholar 

  15. Opie LH, White DA. Adverse interaction between nifedipine and β-blockade.Br Med J 1980;281:1462.

    Google Scholar 

  16. Joshi PI, Dala JJ, Ruttley MS, Sheridan DJ, Henderson AH. Nifedipine and left ventricular function in beta-blocked patients.Br Heart J 1981;45:457–459.

    Google Scholar 

  17. Winniford MD, Markham RV, Firth BG, Nicod P, Hillis LD. Hemodynamic and electrophysiologic effects of verapamil and nifedipine in patients on propranolol.Am J Cardiol 1982;50:704–710.

    Google Scholar 

  18. Boden WE, Korr KS, Bough EW. Nifedipine-induced hypotension and myocardial ischemia in refractory angina pectoris.JAMA 1985;253:1131–1135.

    Google Scholar 

  19. Nesto RW, White HD, Wynne J, Holman L, Antman EM. Comparison of nifedipine and isosorbide dinitrate when added to maximal propranolol therapy in stable angina pectoris.Am J Cardiol 1987;60:256–261.

    Google Scholar 

  20. Taylor SH, Silke B, Lee PS. Intravenous beta-blockade in coronary heart disease: Is cardioselectivity or intrinsic sympathomimetic activity haemodynamically useful?N Engl J Med 1982;306:631–635.

    Google Scholar 

  21. Taylor SH, Silke B, Lee PS, Hilal A. Haemodynamic dose-response effects of intravenous beta-blocking drugs with different ancillary properties in patients with coronary heart disease.Eur Heart J 1982;3:564–569.

    Google Scholar 

  22. Motomura S, Hashimoto K. Reconsideration of vascular selectivity of dihydropyridine calcium antagonists: Comparison of cardiovascular profile of mepirodipine, a novel dihydropyridine consisting of a single stereoisomer with (+)-(S)-(S) conformation, with those of nifedipine and nicardipine.Jpn J Pharmacol 1990;52:319–330.

    Google Scholar 

  23. Motomura S, Wu ZJ, Hashimoto K. Lacidipine, a new long-acting dihydropyridine calcium antagonist, has high vascular selectivity against all intracardiac variables.Heart Vessels 1993;8:16–22.

    Google Scholar 

  24. Pittner H. Haemodynamic actions of celiprolol, a cardioselective beta-receptor blocker.Arzneimittelforsch/Drug Res 1983;33:13–25.

    Google Scholar 

  25. Silke B, Verma SP, Frais MA, Reynolds G, Taylor SH. Differential actions of atenolol and celiprolol on cardiac performance in ischemic heart disease.J Cardiovasc Pharmacol 1986;8(Suppl 4):S138-S144.

    Google Scholar 

  26. Silke B, Verma SP, Guy S. Hemodynamic interactions of a new beta blocker, celiprolol, with nifedipine in angina pectoris.Cardiovasc Drugs Ther 1991;5:681–688.

    Google Scholar 

  27. Motomura S, Iijima T, Taira N, Hashimoto K. Effects of neurotransmitters injected into the posterior and the anterior septal artery on the automaticity of the atrioventricular junctional area of the dog heart.Circ Res 1975;37:146–155.

    Google Scholar 

  28. Motomura S, Hashimoto K. β2-Adrenoceptor-mediated positive dromotropic effects on atrioventricular node of dogs.Am J Physiol 1992;262:H123-H129.

    Google Scholar 

  29. Motomura S. Lipophilic β-adrenoceptor blocking drugs have strong membrane stabilizing actions on atrioventricular nodal and intraventricular conduction: Comparison with their β-adrenoceptor antagonizing actions.Yamanashi Med J 1992;7:157–167.

    Google Scholar 

  30. Wallenstein S, Zucker CL, Fleiss JL. Some statistical methods useful in circulation research.Circ Res 1980;47:1–9.

    Google Scholar 

  31. Estes III NAM, Lin SK, Caruso FS, Solomon TA. Clinical cardiac electrophysiologic study of celiprolol.J Cardiovasc Pharmacol 1986;8(Suppl 4):S116-S118.

    Google Scholar 

  32. Lin SK, Morganroth J, Heng M, et al. Effect of orally administered celiprolol in patients with chronic atrial fibrillation.J Cardiovasc Pharmacol 1986;8(Suppl 4):S112-S115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motomura, S., Hashimoto, K. Interactions of a new beta-blocker, celiprolol, with the calcium antagonists, diltiazem and nifedipine, on atrioventricular conduction. Cardiovasc Drug Ther 9, 445–457 (1995). https://doi.org/10.1007/BF00879034

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00879034

Key Words

Navigation