pure and applied geophysics

, Volume 116, Issue 1, pp 8–31 | Cite as

Evidence of global-scale waves with zonal wave number zero in the stratosphere

  • A. Ebel
  • A. Ghazi
  • W. Bätz
Article

Abstract

Coherency spectra derived from time series of stratospheric quantities indicate oscillations in the frequency range below 0.5 d−1 which are correlated on a global scale. Satellite observations of total ozone and stratospheric radiance (BUV and SIRS, Nimbus4, April–November 1970) have been used to derive phase relationships of such oscillations. As an example, an oscillation of total ozone with a period of 7.5 d and zonal wave number zero is analyzed in detail. The basic assumption is made and tested, that the oscillation reflects stratospheric planetary waves as obtained from Laplace's tidal equations. The observed latitudinal phase shifts for the total ozone oscillation are in good agreement with theoretical predictions. It is concluded from the observations of ozone and radiance that mainly divergence effects related to global-scale waves are responsible for the 7.5 d oscillations of total ozone at high and middle latitudes and at the equator whereas in the latitude range 10°S–20°S predominantly temperature effects are important. Meridional wind amplitudes of some 10 cm/s are sufficient to explain the high and mid-latitude ozone oscillations. At low latitudes vertical wind amplitudes of about 0.2 mm/s corresponding to height changes of the ozone layer of roughly ±20 m are obtained.

Key words

Ozone Planetary wave Stratosphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brewer, A. W. andWilson, A. W. (1968),The regions of formation of atmospheric ozone, Quart. J. Roy. Met. Soc.94, 249–265.Google Scholar
  2. Dickinson, R. E. (1975),Energetics of the stratosphere, J. Atmos. Terr. Phys.37, 855–864.Google Scholar
  3. Ebel, A. undBätz, W. (1975).Beobachtungen der ionosphärischen Absorption im Vergleich mit Kenngrößen der stratosphärischen Zirkulation, Kleinheubacher Ber.18, 269–275.Google Scholar
  4. Ebel, A. andBätz, W. (1977),Response of stratospheric circulation at 10 mb to solar activity oscillations resulting from the sun's rotation, Tellus29, 41–47.Google Scholar
  5. Ebel, A., Ghazi, A. andBätz, W. (1976a),Phase and amplitude relationships of planetary scale oscillations in the stratosphere and lower ionosphere. XIXth COSPAR Plan Meeting, Philadelphia, paper IV-VI.b.3.8. Space Res. 17. (in press).Google Scholar
  6. Ebel, A., Ghazi, A. andHeath, D. F. (1976b),Coherency spectra of global ozone and stratospheric radiance variations. Proc. Intern. Ozone Symposium, Dresden. (in press).Google Scholar
  7. Geisler, J. E. andDickinson, R. E. (1976),The five-day wave on a sphere with realistic zonal winds, J. Atmos. Sci.33, 632–641.Google Scholar
  8. Ghazi, A., Ebel, A. andHeath, D. F. (1976),A study of satellite observations of ozone and stratospheric temperatures during 1970–1971, J. Geophys. Res.81, 5365–5373.Google Scholar
  9. Heath, D. F., Mateer, C. L. andKrueger, A. J. (1973),The Nimbus 4 Backscatter Ultraviolett (BUV) atmospheric ozone experiment — Two years operation. Pure appl. Geophys.106–108, 1238–1253.Google Scholar
  10. Jenkins, G. M. andWatts, D. G. Spectral analysis and its applications. San Francisco, Cambridge, London, Amsterdam 1968).Google Scholar
  11. Julian, P. R. (1975),Comments on the determination of significance levels of the coherence statistics, J. atmos. Sci.32, 836–837.Google Scholar
  12. Krueger, A. J., Heath, D. F. andMateer, C. L. (1973),Variations in the stratospheric ozone field inferred from Nimbus satellite observations, Pure appl. Geophys.106–108, 1254–1263.Google Scholar
  13. Longuet-Higgins, M. S. (1968),The eigenfunctions of Laplace's tidal equations over a sphere, Philos. Transact. Roy. Soc. London, A262, 511–607.Google Scholar
  14. Newell, R. E., Boer, G. J. andDopplick, T. G. (1973),Influence of vertical motion field on ozone concentration in the stratosphere Pure appl. Geophys.106–108, 1531–1541.Google Scholar
  15. Nicolet, M.:Aeronomic reactions of hydrogen and ozone in Mesospheric Models and Related Experiments (ed. G. Fiocco) (Reidel, Dordrecht-Holland 1971), pp. 1–51.Google Scholar
  16. Paetzold, H. K. andRegener, E. Ozon in der Erdatmosphäre inEncyclopedia of Physics (ed. S. Flügge) (Springer, Berlin, Göttingen, Heidelberg 1957), pp. 370–426.Google Scholar
  17. Quiroz, R. S. (1974),Stratospheric warmings in the southern hemisphere deduced from satellite radiation data, 1969–73, Proc. Intern. Conf. Compos. Gen. Circ. Upper Lower Atmos.2, 525–539.Google Scholar
  18. Rao, V. K. R. andChristie, A. D. (1973),The effects of water vapor on oxides of nitrogen and ozone and temperature structure of the stratosphere, Pure appl. Geophys.106–108, 1498–1519.Google Scholar
  19. Rodgers, C. D. (1976),Evidence for the five-day wave in the upper stratosphere, J. Atmos. Sci.33, 710–711.Google Scholar
  20. Volland, H. (1974),Solutions of Laplace's tidal equation for complex frequencies, J. Atmos. Terr. Phys.36, 445–460.Google Scholar
  21. Wark, D., Hilleary, D., Anderson, S. andLienesch, J. (1970),The Satellite Infrared Spectrometer (SIRS) experiment, Nimbus 4 User's Guide, NASA, 101–131.Google Scholar

Copyright information

© Birkhäuser Verlag 1978

Authors and Affiliations

  • A. Ebel
  • A. Ghazi
  • W. Bätz
    • 1
  1. 1.Institute of Geophysics and MeteorologyUniversity of CologneF. R. Germany

Personalised recommendations