pure and applied geophysics

, Volume 114, Issue 2, pp 301–307 | Cite as

The measurement of thermal parameters at high pressures

  • J. P. Cull
Thermal and Radioactive Properties


A transient line source technique has been modified to allow the measurement of thermal parameters in small samples within the confines of high pressure apparatus. Sample preparation is considerably simplified and for conductivity measurements exact dimensions are not required. The pressure derivative of thermal conductivity has been determined for polyethylene and for KCl and shows good agreement with previously published data and supports a linear dependence.


Thermal Conductivity Polyethylene High Pressure Sample Preparation Linear Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. Andersson andG. Backstrom,Pressure dependence of the thermal conductivity, thermal diffusivity and specific heat of polyethylene, J. Appl. Phys.44 (1973), 2601–2605.Google Scholar
  2. F. R. Boyd andJ. L. England,Apparatus for phase-equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750°C, J. Geophys. Res.65 (1960), 741.Google Scholar
  3. P. W. Bridgman,The thermal conductivity and compressibility of several rocks under high pressures, Amer. J. Sci.7 (1924), 81–102.Google Scholar
  4. H. S. Carslaw andJ. C. Jaeger,Conduction of Heat in Solids (2nd edition) (Oxford Univ. Press 1959).Google Scholar
  5. J. P. Cull,Thermal conductivity probes for rapid measurements in rock, J. of Phys. E: Sci. Instr.7 (1974), 771–774.Google Scholar
  6. H. Fujisawa, N. Fujii, H. Mizutani, H. Kanamori andS. Akimoto,Thermal diffusivity of Mg2SiO4, Fe2SiO4,and NaClat high pressures and temperatures, J. Geophys. Res.73 (1968), 4727–4733.Google Scholar
  7. R. von Herzen andA. E. Maxwell,The measurement of thermal conductivity of deep-sea sediments by a needle-probe method, J. Geophys. Res.64 (1959), 1557–1563.Google Scholar
  8. D. S. Hughes andF. Sawin,Thermal donductivity of dielectric solids at high pressure, Phys. Rev.161 (1967), 861–863.Google Scholar
  9. A. Jayaraman, A. R. Hutson, J. H. McFee, A. S. Coriell andR. G. Maines,Hydrostatic and uniaxial pressure generation using teflon cell container in conventional piston-cylinder device, Rev. Sci. Instrum.38 (1967), 44.Google Scholar
  10. H. K. Mao andP. M. Bell,Optical and electrical behaviour of olivine and spinel (Fe2SiO4)at high pressure, Carnegie Institute Annual Report (1971–1972), 520–527.Google Scholar
  11. J. F. Schatz andG. Simmons,Thermal conductivity of earth materials at high temperatures, J. Geophys. Res.77 (1972), 6966.Google Scholar
  12. H. H. Schloessin andZ. Dvorak,Anisotropic lattice thermal conductivity in enstatite as a function of pressure and temperature, Geophys. J. R. astr. Soc.27 (1972), 499–516.Google Scholar
  13. R. W. Scott, J. A. Fountain andE. A. West,A comparison of two transient methods of measuring thermal conductivity of particulate samples, Rev. Sci. Instrum.44 (1973), 1058–1063.Google Scholar

Copyright information

© Birkhäuser Verlag 1976

Authors and Affiliations

  • J. P. Cull
    • 1
  1. 1.Department of Geology and MineralogyOxford UniversityOxfordU.K.

Personalised recommendations