Advertisement

Applied Categorical Structures

, Volume 2, Issue 1, pp 91–99 | Cite as

Onm-separated projection spaces

  • Eraldo Giuli
Article

Abstract

Closure operators in the category of projection spaces are investigated. It is shown that completeness, absolutes-closure ands-injectivity coincide in the subcategory of separated projection spaces and that there compactness with respect to projections implies completeness.

Mathematics Subject Classifications (1991)

18B99 68Q55 

Key words

Projection space closure operator complete separated space compact projection space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. C. L. Brümmer, E. Giuli, and H. Herrlich: Epireflections which are completions,Cahiers Topologie Géom. Différentielle Catégoriques 33 (1992), 71–93.Google Scholar
  2. 2.
    D. Dikranjan and E. Giuli: Closure operators I,Topology Appl. 27 (1987), 129–143.Google Scholar
  3. 3.
    D. Dikranjan and E. Giuli: Preradicals, factorizations and compactness in categories of modules, preprint, L'Aquila, 1990.Google Scholar
  4. 4.
    D. Dikranjan, E. Giuli, and W. Tholen: Closure operators II, inCategorical Topology and Its Relation to Analysis, Algebra and Combinatorics, Prague, 1988 (World Sci. Publ., New York, 1989), 297–335.Google Scholar
  5. 5.
    C. Dimitrovici, H. Ehrig, M. Große-Rode, and C. Rieckhoff: Projektionsräume und Projektionsalgebren: Eine Algebraisierung von ultrametrischen Räumen, Technical Report 87-7, TU Berlin, 1987.Google Scholar
  6. 6.
    H. Ehrig, F. Parisi-Presicce, P. Boehm, C. Rieckhoff, D. Dimitrovici, and M. Große-Rode: Algebraic data type and process specification based on projection spaces, Technical Report 87-8, TU Berlin, 1987.Google Scholar
  7. 7.
    E. Giuli, S. Mantovani, and W. Tholen: Objects with closed diagonals,J. Pure Appl. Algebra 51 (1988), 129–140.Google Scholar
  8. 8.
    M. Große-Rode and D. Dimitrovici: Algebraic specification of action trees and recursive processes, in M. Nivat and A. Podelski (eds.),Tree Automata and Languages (Elsevier Science Publishers 1992), 235–290.Google Scholar
  9. 9.
    H. Herrlich and H. Ehrig: The construct PRO of projection spaces: its internal structure, in:Categorical Methods in Computer Science, Lecture Notes in Computer Science 393, Springer-Verlag, Berlin, 286–293.Google Scholar
  10. 10.
    H. Herrlich and G. E. Strecker:Category Theory 2o edition, Heldermann-Verlag, Berlin, 1979.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Eraldo Giuli
    • 1
  1. 1.Dipartimento di Matematica Pura ed ApplicataUniversità degli StudiL'AquilaItaly

Personalised recommendations