Applied Categorical Structures

, Volume 2, Issue 1, pp 13–43 | Cite as

Convexity theories 0. Foundations

  • Helmut Röhrl
Article

Abstract

For an arbitrary prenormed semiring, the closed unit ball functor from the category R pnSmod1 ofR-prenormedR-semimodules with contractions to the category of sets has a left adjoint. For such a semiringR the notion of finitary convexity theory Γ overR is introduced and the category ΓC of Γ-modules is defined. It is shown that the canonical functor R pnSmod1 → ΓC has a left adjoint. In caseR is a banach semiring one has infinitary convexity theories, in addition to the finitary ones, and again the canonical functor R bnSmod1 → ΓC has a left adjoint.

Mathematics Subject Classifications (1991)

52A01 16Y60 16D99 46H25 

Key words

Convexity theory Γ-convex module unit ball functor semiring semimodule banach semiring banach semimodule pretopology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kneser, H.: Konvexe Räume,Arch. d. Math. 3 (1952), 198–206.Google Scholar
  2. 2.
    MacLane, S.:Categories for the Working Mathematician, Springer-Verlag, 1971.Google Scholar
  3. 3.
    Manes, E.G.:Algebraic Theories, Springer-Verlag, 1976.Google Scholar
  4. 4.
    Pumplün, D. and Röhrl, H.: Banach spaces and totally convex spaces I,Comm. in Alg. 12 (1984), 953–1019.Google Scholar
  5. 5.
    Pumplün, D. and Röhrl, H.: Convexity Theories IV. Klein-Hilbert Parts in Convex Modules. In preparation.Google Scholar
  6. 6.
    Röhrl, H.:Convexity Theories I. Γ-Convex Spaces, Constantin Carathéodory: An International Tribute, World Sci. Publ. (1991), 1175–1209.Google Scholar
  7. 7.
    Semadeni, Z.:Banach Spaces of Continuous Functions, Polish Sci. Publ., 1971.Google Scholar
  8. 8.
    Stone, M.H.: Postulates for the barycentric calculus,Ann. Math. 29 (1949), 25–30.Google Scholar
  9. 9.
    Tholen, W.: Relative Bildzerlegungen und algebraische Kategorien, Diss. Univ. Münster, 1973.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Helmut Röhrl
    • 1
  1. 1.Department of MathematicsUniversity of California at San DiegoLa JollaUSA

Personalised recommendations