Skip to main content
Log in

Pharmacology of the potassium channel openers

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

The potassium-channel openers comprise a large number of molecules that can be classified into three basic groups: (1) agents like levcromakalim that open a small-conductance (10–30 pS) glibenclamide-sensitive K+ channel currently known as the ATP-sensitive K+ channel, KATP; (2) hybrid molecules, such as nicorandil, that open KATP channels and that also activate the enzyme-soluble guanylate cyclase; (3) molecules like dehydrosaponin 1 that open the large-conductance (100–150 pS) calcium-dependent K+ channel, BKCa. K+-channel openers in groups 1 and 2 are most potent on smooth muscle, but KATP channels in cardiac muscle, neurones and the pancreatic β cell are also affected. In vivo, moderate to high doses produce a fall in diastolic pressure with reflex tachycardia; low doses may exert selective dilator effects on specific vascular beds with little effect on systemic pressure. In vitro, all smooth muscles are relaxed with loss of spontaneous electric and mechanical activity; hyperpolarization to the region of EK is often observed. These effects can be antagonized by glibenclamide and also by imidazolines and guanidines, such as phentolamine, guanethidine, and antazoline, agents that also inhibit the smooth muscle delayed rectifier channel, KV. The mode and site of action of the group 1 and 2 K+-channel openers is the subject of intense study. Irrespective of their specific mode of action, the K+-channel openers, especially the hybrid molecules such as nicorandil, constitute a novel and promising approach to the treatment of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones AW. Content and fluxes of electrolytes. In: Bohr DF, Somlyo AP, Sparks HV, eds.Handbook of Physiology. Baltimore, MD: American Physiological Society, 1980:253–299.

    Google Scholar 

  2. Hirst GDS, Edwards FR. Sympathetic neuroeffector transmission in arteries and arterioles.Physiol Rev 1989;69:546–604.

    PubMed  Google Scholar 

  3. Rudy B. Diversity and ubiquity of K+-channels.Neuroscience 1988;25:729–749.

    PubMed  Google Scholar 

  4. Bolton TB, Beech DJ. Smooth muscle potassium channels; their electrophysiology and function. In: Weston AH, Hamilton TC, eds.Potassium Channel Modulators: Pharmacological, Molecular and Clinical Aspects. Oxford: Blackwell Scientific, 1992:144–180.

    Google Scholar 

  5. Edwards G, Weston AH. The effect of potassium channel modulating drugs on isolated smooth muscle. In: Szekeres L, Papp JG, eds.Handbook of Experimental Pharmacology, Vol 111, Pharmacology of Smooth Muscle. Heidelberg: Springer Verlag, 1994:469–531.

    Google Scholar 

  6. Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels and voltage-dependence of arterial smooth muscle tone.Am J Physiol 1990;259:C3-C18.

    PubMed  Google Scholar 

  7. Hamilton TC, Weir SW, Weston AH. Comparison of the effects of BRL 34915 and verapamil on rat portal vein.Br J Pharmacol 1985;86:443P.

    Google Scholar 

  8. Hamilton TC, Weir SW, Weston AH. Comparison of the effects of BRL 34915 and verapamil on electrical and mechanical activity in rat portal vein.Br J Pharmacol 1986;88:103–111.

    PubMed  Google Scholar 

  9. Yanagisawa T, Satoh K, Taira N. Circumstantial evidence for increased potassium conductance of membrane of cardiac muscle by 2-nicotinamidoethyl nitrate (SG-75).Jpn J Pharmacol 1979;29:687–694.

    PubMed  Google Scholar 

  10. Furukawa K, Itoh T, Kajiwara M, et al. Vasodilating actions of 2-nicotinamidoethyl nitrate on porcine and guinea-pig coronary arteries.J Pharmacol Exp Ther 1981;218:248–259.

    PubMed  Google Scholar 

  11. Itoh T, Furukawa K, Kajiwara M, et al. Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells and on adrenergic transmission in the guinea-pig and porcine mesenteric arteries.J Pharmacol Exp Ther 1981;218:260–270.

    PubMed  Google Scholar 

  12. Holzmann S. Cyclic GMP as a possible mediator of coronary relaxation by nicorandil (SG-75).J Cardiovasc Pharmacol 1983;5:364–370.

    PubMed  Google Scholar 

  13. Edwards G, Weston AH. Structure-activity relationship of K+ channel openers.Trends Pharmacol Sci 1990;11:417–422.

    PubMed  Google Scholar 

  14. Stemp G, Evans JM. Discovery and development of cromakalim and related potassium channel activators. In: Ganellin CR, Roberts SM, eds.Medicinal Chemistry, 2nd ed. New York: Academic Press, 1993:141–162.

    Google Scholar 

  15. Petersen HJ, Kaergaard-Nielsen C, Arrigoni-Martelli E. Synthesis and hypotensive activity of N-alkyl-N″-cyano-N′-pyridylguanidines.J Med Chem 1978;21:773–781.

    PubMed  Google Scholar 

  16. Bray KM, Newgreen DT, Small RC, et al. Evidence that the mechanism of the inhibitory action of pinacidil in rat and guinea-pig smooth muscle differs from that of glyceryl trinitrate.Br J Pharmacol 1987;91:421–429.

    PubMed  Google Scholar 

  17. Southerton JS, Weston AH, Bray KM, Newgreen DT, Taylor SG. The potassium channel opening action of pinacidil: Studies using biochemical, ion flux and microelectrode techniques.Naunyn Schmiedebergs Arch Pharmacol 1988;338:310–318.

    PubMed  Google Scholar 

  18. Ibbotson T, Edwards G, Noack T, Weston AH. Effects of P1060 and aprikalim on whole-cell currents in rat portal vein; inhibition by glibenclamide and phentolamine.Br J Pharmacol 1993;108:991–998.

    PubMed  Google Scholar 

  19. Bray KM, Quast U. A specific binding site for K+ channel openers in rat aorta.J Biol Chem 1992;267:11689–11692.

    PubMed  Google Scholar 

  20. McCall JM, Aiken JW, Chidchester CG, Ducharme DW, Wendling MG. Pyrimidine and triazine 3-oxide sulphates: A new family of vasodilators.J Med Chem 1983;26:1791–1793.

    PubMed  Google Scholar 

  21. Meisheri KD, Cipkus LA, Taylor CJ. Mechanism of action of minoxidil sulfate-induced vasodilation: A role for increased K+ permeability.J Pharmacol Exp Ther 1988;245:751–760.

    PubMed  Google Scholar 

  22. Winquist RJ, Heaney LA, Wallace AA, et al. Glyburide blocks the relaxation response to BRL 34915 (cromakalim), minoxidil sulfate and diazoxide in vascular smooth muscle.J Pharmacol Exp Ther 1989;248:149–156.

    PubMed  Google Scholar 

  23. Newgreen DT, Bray KM, McHarg AD, et al. The action of diazoxide, minoxidil sulphate on rat blood vessels: A comparison with cromakalim.Br J Pharmacol 1990;199:605–613.

    Google Scholar 

  24. Bray KM, Quast U. Some degree of overlap exists between the K+-channels opened by cromakalim and those opened by minoxidil sulphate in rat isolated aorta.Naunyn Schmiedebergs Arch Pharmacol 1991;344:351–359.

    PubMed  Google Scholar 

  25. Kishii K-I, Morimoto T, Nakajima N, Yamazaki K, Tsujitani M, Takayanagi I. Effects of LP-805, a novel vasorelaxant agent, a potassium channel opener, on rat thoracic aorta.Gen Pharmacol 1992;23:347–353.

    PubMed  Google Scholar 

  26. Kamouchi M, Kajioka S, Sakai T, Kitamura K, Kuriyama H. A target K+ channel for the LP-805-induced hyperpolarization in smooth muscle cells of the rabbit portal vein.Naunyn Schmiedebergs Arch Pharmacol 1993;347:329–335.

    PubMed  Google Scholar 

  27. Pirotte B, Detullio P, Lebrun, P, et al. (1993) 3-(Alkylamino)-4H-pyridol[4,3-E]-1,2,4-thiadiazine 1,1-dioxides as powerful inhibitors of insulin release from rat pancreatic β-cells—A new class of potassium channel openers?J Med Chem 1993;36:3211–3213.

    PubMed  Google Scholar 

  28. Zünkler BJ, Lenzen S, Mauer K, Panten U, Trube G. Concentration-dependent effects of tolbutamide, meglitinide, glipizide, glibenclamide and diazoxide on ATP-regulated K+ currents in pancreatic β-cells.Naunyn Schmiedebergs Arch Pharmacol 1988;337:225–230.

    PubMed  Google Scholar 

  29. Quast U, Cook NS. In vitro and in vivo comparison of two K+ channel openers diazoxide and cromakalim and their inhibition by glibenclamide.J Pharmacol Exp Ther 1989;250:261–271.

    PubMed  Google Scholar 

  30. Hiraoka M, Fan Z. Activation of ATP-sensitive outward K+ current by nicorandil (2-nicotinamidoethyl nitrate) in isolated ventricular myocytes.J Pharmacol Exp Ther 1989;250:278–285.

    PubMed  Google Scholar 

  31. Taira N. Nicorandil as a hybrid between nitrates and potassium channel activators.Am J Cardiol 1989;63:18J-24J.

    PubMed  Google Scholar 

  32. Frampton J, Buckley MM, Filton A. Nicorandil. A review of its pharmacology and therapeutic efficacy in angina pectoris.Drugs 1992;44:625–655.

    PubMed  Google Scholar 

  33. Yanagisawa T, Okada Y. The structure-activity relationship of KRN2391 as an N-K hybrid.Cardiovasc Drug Rev 1993;11;94–115.

    Google Scholar 

  34. Bonnett PA, Michel A, Laurent F, et al. Synthesis and antibronchospastic activity of 8-alkoxy- and 8-(alkylamino)imidazo[1,2α]pyrazines.J Med Chem 1992;35:3353–3358.

    PubMed  Google Scholar 

  35. Laurent F, Bonnet PA, Chapat JP, Boucard M. Evaluation of the relaxant effects of SCA40, a novel, charybdotoxin-sensitive K+-channel opener, in guinea-pig isolated trachealis.Br J Pharmacol 1993;108:622–626.

    PubMed  Google Scholar 

  36. Olesen S-P, Wätjen F, Hayes AG. A novel benzimidazole, NS004, activates large conductance Ca2+-dependent K+ channels in aortic smooth muscle.Br J Pharmacol 1993;110:25P.

    Google Scholar 

  37. McManus OB, Harris GH, Giangiacomo KM, et al. An activator of calcium-dependent potassium channels isolated from a medicinal herb.J Biol Chem 1993;32:6128–6133.

    Google Scholar 

  38. Edwards G, Duty S, Trezise DJ, Weston AH. Effects of potassium channel modulators on the cardiovascular system. In: Weston AH, Hamilton TC, eds.Potassium Channel Modulators: Pharmacological, Molecular and Clinical Aspects. Oxford: Blackwell Scientific, 1992:369–421.

    Google Scholar 

  39. Longman SD, Hamilton TC. Potassium channel activator drugs: Mechanism of action, pharmacological properties and therapeutic potential.Med Res Rev 1992;12;73–148.

    PubMed  Google Scholar 

  40. Friedel HA, Brogden RN. Pinacidil: A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of hypertension.Drugs 1990;40:929–967.

    Google Scholar 

  41. Allen SL, Beech DJ, Foster RW, Morgan GP, Small RC. Electrophysiological and other aspects of the relaxant action of isoprenaline in guinea-pig isolated trachealis.Br J Pharmacol 1985;86:843–854.

    PubMed  Google Scholar 

  42. Raeburn DM, Brown TJ. RP49356 and cromakalim relax airway smooth muscle in vitro by opening a sulphonylurea-sensitive K+ channel: A comparison with nifedipine.J Pharmacol Exp Ther 1991;256:492–499.

    PubMed  Google Scholar 

  43. Hollingsworth M, Amédée T, Edwards D, et al. The relaxant action of BRL 34915 in rat uterus.Br J Pharmacol 1987;91:803–813.

    PubMed  Google Scholar 

  44. Piper I, Minshall E, Downing SJ, Hollingsworth M, Sadraei H. Effects of several potassium channel openers and glibenclamide on the uterus of the rat.Br J Pharmacol 1990;101:901–907.

    PubMed  Google Scholar 

  45. Foster CD, Fujii K, Kingdon J, Brading AF. The effect of cromakalim on the smooth muscle of the guinea-pig urinary bladder.Br J Pharmacol 1989;97:281–291.

    PubMed  Google Scholar 

  46. Malmgren A, Andersson K-E, Andersson P-O, Fovaeus M, Sjögren C. Effects of cromakalim (BRL 34915) and pinacidil on normal and hypertrophied rat detrusor in vitro.J Urol 1990;143:828–834.

    PubMed  Google Scholar 

  47. Steinberg MI, Ertel P, Smallwood JK, Wyss V, Zimmermann K. The relation between vascular relaxant and cardiac electrophysiological effects of pinacidil.J Cardiovasc Pharmacol 1988;12:S30-S40.

    Google Scholar 

  48. Yanagisawa T, Hashimoto H, Taira N. The negative inotropic effect of nicorandil is independent of cyclic GMP changes: A comparison with pinacidil and cromakalim in canine atrial muscle.Br J Pharmacol 1988;95:393–398.

    PubMed  Google Scholar 

  49. Karashima T, Itoh T, Kuriyama H. Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells of the guinea-pig mesenteric and portal veins.J Pharmacol Exp Ther 1982;221:472–480.

    PubMed  Google Scholar 

  50. Taylor SG, Southerton JS, Weston AH, Baker JRJ. Endothelium-dependent effects of acetylcholine in rat aorta: A comparison with sodium nitroprusside and cromakalim.Br J Pharmacol 1988;94:853–863.

    PubMed  Google Scholar 

  51. Bray KM, Weston AH, Duty S, et al. Differences between the effects of cromakalim and nifedipine on agonist-induced responses in rabbit aorta.Br J Pharmacol 1991;102:337–344.

    PubMed  Google Scholar 

  52. Allen SL, Boyle JP, Cortijo J, Foster RW, Morgan GP, Small RC. Electrical and mechanical effects of BRL 34915 in guinea-pig isolated trachealis.Br J Pharmacol 1986;89:395–405.

    PubMed  Google Scholar 

  53. Longmore J, Bray KM, Weston AH. The contribution of Rb-permeable potassium channels to the relaxant and membrane hyperpolarizing actions of cromakalim, RP49356 and diazoxide in bovine tracheal smooth muscle.Br J Pharmacol 1991;102:979–985.

    PubMed  Google Scholar 

  54. Imanishi S, Arita M, Kiyosue T, Aomini M. Effects of SG-75 (nicorandil) on electrical activity of canine cardiac Purkinje fibres.J Cardiovasc Pharmacol 1983;225:281–284.

    Google Scholar 

  55. Edwards G, Henshaw M, Miller M, Weston AH. Comparison of the effects of several potassium channel openers on rat bladder and rat portal vein in vitro.Br J Pharmacol 1991;102:679–686.

    PubMed  Google Scholar 

  56. Dunne MJ, Illot MC, Petersen OH. Interaction of diazoxide, tolbutamide and ATP4− on nucleotide-dependent K+ channels in an insulin-secreting cell line.J Membr Biol 1987;99:215–224.

    PubMed  Google Scholar 

  57. Sturgess NC, Kozlowski RZ, Carrington CA, Hales CN, Ashford MLJ. Effects of sulphonylureas and diazoxide on insulin secretion and nucleotide-sensitive channels in an insulin-secreting cell line.Br J Pharmacol 1988;95:83–94.

    PubMed  Google Scholar 

  58. Garrino MG, Plant TD, Henquin JC. Effects of putative activators of K+ channels in mouse pancreatic β-cells.Br J Pharmacol 1989;98:957–965.

    PubMed  Google Scholar 

  59. Buckingham RE, Hamilton TC, Howlett DR, Mootoo S, Wilson C. Inhibition by glibenclamide of the vasorelaxant action of cromakalim in the rat.Br J Pharmacol 1989;97:57–64.

    PubMed  Google Scholar 

  60. Ashcroft FM, Rorsman P. ATP-sensitive K+ channels: A link between β-cell metabolism and insulin secretion.Biochem Soc Trans 1990:18;109–111.

    PubMed  Google Scholar 

  61. Edwards G, Weston AH. The pharmacology of ATP-sensitive potassium channels.Annu Rev Pharmacol Toxicol 1993;33:597–637.

    PubMed  Google Scholar 

  62. Ibbotson T, Edwards G, Weston AH. Antagonism of levcromakalim by imidazoline- and guanidine-derivatives in rat portal vein: Involvement of the delayed rectifier.Br J Pharmacol 1993;110:1556–1564.

    PubMed  Google Scholar 

  63. Edwards G, Ibbotson T, Weston AH. Levcromakalim may induce a voltage-independent K-current in rat portal veins by modifying the gating properties of the delayed rectifier.Br J Pharmacol 1993;110:1037–1048.

    PubMed  Google Scholar 

  64. Noack T, Deitmer P, Edwards G, Weston AH. Characterisation of potassium currents modulated by BRL 38227 in the rat portal vein.Br J Pharmacol 1992;106:717–726.

    PubMed  Google Scholar 

  65. Kajioka S, Oike M, Kitamura K. Nicorandil opens a calciumactivated potassium channel in smooth muscle cells of the rat portal vein.J Pharmacol Exp Ther 1990;254:905–913.

    PubMed  Google Scholar 

  66. Kajioka S, Kitamura K, Kuriyama H. Guanosine diphosphate activates an adenosine 5′-triphosphate-sensitive potassium channel in the rabbit portal vein.J Physiol 1991;444:397–418.

    PubMed  Google Scholar 

  67. Beech DJ, Zhang H, Nakao K, Bolton TB. Single channel and whole-cell currents evoked by levcromakalim in smooth muscle cells from the rabbit portal vein.Br J Pharmacol 1993;110:583–590.

    PubMed  Google Scholar 

  68. Noack Th, Edwards G, Deitmer P, Weston AH. Potassium channel modulation in rat portal vein by ATP depletion: A comparison with the effects of levcromakalim (BRL 38227).Br J Pharmacol 1992;107:945–955.

    PubMed  Google Scholar 

  69. Beech DJ, Zhang H, Nakao K, Bolton TB. K+ channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells.Br J Pharmacol 1993;110:573–582.

    PubMed  Google Scholar 

  70. Edwards G, Weston AH. Induction of a glibenclamide-sensitive K-current by modification of a delayed rectifier channel in rat portal vein and insulinoma cells.Br J Pharmacol 1993;110:1280–1281.

    PubMed  Google Scholar 

  71. Colatsky TJ. Potassium channel blockers: Synthetic agents and their antiarrhythmic potential. In: Weston AH, Hamilton TC, eds.Potassium Channel Modulators: Pharmacological, Molecular and Clinical Aspects. Oxford: Blackwell Scientific, 1992:304–340.

    Google Scholar 

  72. Greenwood IA, Weston AH. Effects of rubidium on responses to potassium channel openers in rat isolated aorta.Br J Pharmacol 1993;109:925–932.

    PubMed  Google Scholar 

  73. Sheppard DN, Welsh MJ. Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents.J Gen Physiol 1992;100:573–591.

    PubMed  Google Scholar 

  74. Okabe S, Nakao K, Kitamura K, Kuriyama H, Weston AH. Actions of cromakalim on ionic currents recorded from single smooth muscle cells of the rat portal vein.J Pharmacol Exp Ther 1990;252:832–839.

    PubMed  Google Scholar 

  75. Chopra LC, Charles HC, Ward JPT. Direct actions of BRL 38227 and glibenclamide on intracellular calcium stores in cultured airway smooth muscle of rabbit.Br J Pharmacol 1992;105:259–260.

    PubMed  Google Scholar 

  76. Challis RAJ, Patel N, Adams D, Arch JRS. Inhibitory action of the potassium channel opener BRL 38227 on agonist stimulated phosphoinositide metabolism in bovine tracheal smooth muscle.Biochem Pharmacol 1992;43:17–20.

    PubMed  Google Scholar 

  77. Adelman JP, Shen K-Z, Kavanaugh M, Lagrutta A, Bond CT, North RA. Calcium-activated potassium channels expressed from cloned complementary DNAs.Neuron 1992;9:209–216.

    PubMed  Google Scholar 

  78. Brown AM. Ion channels as G protein effectors.News Pharmacol Sci 1991;6:158–161.

    Google Scholar 

  79. Kubo Y, Baldwin TJ, Jan YN, Jan LY. Primary structure and functional expression of a mouse inward rectifier potassium channel.Nature 1993;362:127–133.

    PubMed  Google Scholar 

  80. Kubo Y, Reuveny E, Slesinger PA, Jan YN, Jan LY. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel.Nature 1993;364:802–806.

    PubMed  Google Scholar 

  81. Wareham AC. Skeletal muscle potassium channels and their relevance to muscle disease. In: Weston AH, Hamilton TC, eds.Potassium Channel Modulators: Pharmacological, Molecular and Clinical Aspects. Oxford: Blackwell Scientific, 1992:237–271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Pfizer Central Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, G., Weston, A.H. Pharmacology of the potassium channel openers. Cardiovasc Drug Ther 9 (Suppl 2), 185–193 (1995). https://doi.org/10.1007/BF00878465

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00878465

Key Words

Navigation