Skip to main content
Log in

Regular and normal closure operators and categorical compactness for groups

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

For a class of groupsF, closed under formation of subgroups and products, we call a subgroupA of a groupG F-regular provided there are two homomorphismsf, g: G » F, withF εF, so thatA = {x εG |f(x) =g(x)}.A is calledF-normal providedA is normal inG andG/A εF. For an arbitrary subgroupA ofG, theF-regular (respectively,F-normal) closure ofA inG is the intersection of allF-regular (respectively,F-normal) subgroups ofG containingA. This process gives rise to two well behaved idempotent closure operators.

A groupG is calledF-regular (respectively,F-normal) compact provided for every groupH, andF-regular (respectively,F-normal) subgroupA ofG × H, π2(A) is anF-regular (respectively,F-normal) subgroup ofH. This generalizes the well known Kuratowski-Mrówka theorem for topological compactness.

In this paper, theF-regular compact andF-normal compact groups are characterized for the classesF consisting of: all torsion-free groups, allR-groups, and all torsion-free abelian groups. In doing so, new classes of groups having nice properties are introduced about which little is known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumslag, G.: Some aspects of groups with unique roots,Acta Math. 104 (1960), 217–303.

    Google Scholar 

  2. Castellini, G.: Closure operators, monomorphisms and epimorphisms in categories of groups,Cahiers de Topologie et Géométrie Différentielle Catégoriques XXVII(2) (1986), 151–167.

    Google Scholar 

  3. Castellini, G.: Compact objects, surjectivity of epimorphisms and compactifications,Cahiers de Topologie et Géométrie Différentielle Catégoriques XXXI(1) (1990), 53–65.

    Google Scholar 

  4. Cassidy, C., Hebert, M. and Kelly, G. M.: Reflective subcategories, localizations and factorization systems,J. Austral. Math. Soc. (Series A)38 (1985), 287–329.

    Google Scholar 

  5. Dikranjan, D. and Giuli, E.: Closure operators I,Topology and its Applications 27 (1987), 129–143.

    Google Scholar 

  6. Dikranjan, D. and Giuli, E.: Factorizations, injectivity and Compactness in categories of modules,Comm. Algebra 19 (1991), 45–83.

    Google Scholar 

  7. Fay, T. H.: Compact modules,Comm. Algebra 16 (1988), 1209–1219.

    Google Scholar 

  8. Fay, T. H.: Remarks on the Mal'cev completion of torsion-free locally nilpotent groups,Cahiers de Topologie et Géométrie Différentielle Catégoriques XXXV(1) (1994), 75–84.

    Google Scholar 

  9. Fay, T. H. and Joubert, S. V.: Categorical compactness for rings,J. Austral. Math. Soc., accepted, to appear.

  10. Fay, T. H. and Walls, G. L.: Compact nilpotent groups,Comm. Algebra 17 (1989), 2255–2268.

    Google Scholar 

  11. Fay, T. H. and Walls, G. L.: Categorically compact locally nilpotent groups,Comm. Algebra 18 (1990), 3423–3435.

    Google Scholar 

  12. Fay, T. H. and Walls, G. L.: Categorically compact locally nilpotent groups: a corrigendum,Comm. Algebra 20 (1992), 1019–1022.

    Google Scholar 

  13. Fay, T. H. and Walls, G. L.: Completions and categorical compactness for nilpotent groups,Quaestiones Mathematicae 17 (1994), 437–451.

    Google Scholar 

  14. Fay, T. H. and Walls, G. L.: A characterization of categorically compact locally nilpotent groups,Comm. Algebra,22 (1994), 3213–3225.

    Google Scholar 

  15. Fay, T. H. and Schoeman, M. J.: The Z-adic completion, thep-adic completion, and categorical compactness for nilpotent groups”, in preparation.

  16. Holgate, D.: Closure operators in categories, University of Cape Town Thesis Reprint TR 015, June, 1992.

  17. Herrlich, H., Salicrup, G. and Strecker, G. E.: Factorizations, denseness, separation, and relatively compact objects,Topology and its Applications 27 (1987), 157–169.

    Google Scholar 

  18. Manes, E. G.: Compact Hausdorff Objects,Topology and its Applications 4 (1979), 341–360.

    Google Scholar 

  19. Salbany, S.: Reflective subcategories and closure operators, inProc. Conf. Categorical Topology (Mannheim 1975), Lecture notes in Mathematics 540, Springer-Verlag, Berlin, pp. 548–565.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fay, T.H., Walls, G.L. Regular and normal closure operators and categorical compactness for groups. Appl Categor Struct 3, 261–278 (1995). https://doi.org/10.1007/BF00878444

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00878444

Mathematics subject classifications (1991)

Key words

Navigation