Skip to main content
Log in

Droplet formation from a jet of one liquid entering another

  • Published:
Journal of engineering physics Aims and scope

Abstract

Wave theory has been used to derive expressions for the droplet sizes under various flow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. H. Lamb, Hydrodynamics, Dover (1932).

  2. E. Mayer, ARS J.,31, No. 12, 1783–1785 (1961).

    Google Scholar 

  3. A. S. Lyshevskii, Liquid Break-Up Trends in Mechanical Sprayers [in Russian], Novocherkassk (1961).

  4. B. J. Meister and G. F. Scheele, AIChE J.,15, No. 5, 659–670 (1969).

    Google Scholar 

  5. V. B. Okhotskii, Inzh.-Fiz. Zh.,49, No. 3, 428–432 (1985).

    Google Scholar 

  6. Ya. Troitskii, Zh. Tekh. Fiz.,3, No. 5, 729–742 (1933).

    Google Scholar 

  7. C. B. Hayworth and R. E. Treybal, Ind. Eng. Chem.,42, No. 6, 1174–1181 (1950).

    Google Scholar 

  8. G. F. Sheele and B. J. Meister, AIChE J.,14, No. 1, 9–15 (1968).

    Google Scholar 

  9. L. E. M. Chazal and J. T. Ryan, AIChE J.,17, No. 5, 1226–1229 (1971).

    Google Scholar 

  10. N. I. Smirnov and S. E. Polyuta, Zh. Prikl. Khim.,21, No. 11, 1137–1140 (1948).

    Google Scholar 

  11. Yu. N. Kovalev, S. Z. Kogan, and A. P. Zakharychev, Hydrodynamics and Mass Transfer in Mass-Exchange Equipment [in Russian], Trudy MKhTI, No. 90, Moscow (1976), pp. 39–50.

    Google Scholar 

  12. J. A. Izard, AIChE J.,18, No. 3, 634–638 (1972).

    Google Scholar 

  13. A. H. P. Skelland and K. R. Johnson, Can. J. Chem. Eng.,52, No. 6, 732–738 (1974).

    Google Scholar 

  14. R. Kumar, Chem. Eng. Sci.,26, No. 2, 177–184 (1971).

    Google Scholar 

  15. V. I. Blinov and E. L. Feinberg, Zh. Tekh. Fiz.,3, No. 5, 712–728 (1933).

    Google Scholar 

  16. A. Heinlein, Internal-Combustion Engines [Russian translation], Vol. 1, Moscow-Leningrad (1936), pp. 5–24.

    Google Scholar 

  17. D. W. Lee and R. Spencer, Internal-Combustion Engines [Russian translation], Vol. 1, Moscow-Leningrad (1936).

  18. C. C. Miesse, Ind. Eng. Chem.,47, No. 9, 1690–1701 (1955).

    Google Scholar 

  19. R. E. Ford and C. G. L. Furmidge, Br. J. Appl. Phys.,18, No. 3, 335–348 (1967).

    Google Scholar 

  20. A. K. Bajaj and V. K. Garg, Trans. ASME, Ser. E,44, No. 3, 378–384 (1977).

    Google Scholar 

  21. P. Lafrance, G. Aiello, R. C. Ritter, and J. S. Trefil, Phys. Fluids,17, No. 7, 1469–1470 (1974).

    Google Scholar 

  22. P. I. Kuznetsov and L. Ya. Tslaf, Zh. Tekh. Fiz.,28, No. 6, 1220–1223 (1958).

    Google Scholar 

  23. N. I. Smirnov and S. E. Polyuta, Zh. Prikl. Khim.,22, No. 11, 1208–1210 (1949).

    Google Scholar 

  24. Yu. A. Buevich and V. V. Butkov, TOKhT,5, No. 1, 74–83 (1971).

    Google Scholar 

  25. É. Z. Shul'ts and L. I. Titel'man, Zh. Prikl. Khim.,45, No. 7, 1620–1623 (1972).

    Google Scholar 

  26. R. J. Benzing and J. E. Myers, Ind. Eng. Chem.,47, No. 10, 2087–2090 (1955).

    Google Scholar 

  27. K. Mori, K. Sano, and K. Sato, Trans. ISI Jpn.,19, No. 9, 553–558 (1979).

    Google Scholar 

  28. G. S. Bondarev and V. F. Romanov, Khim. Tekhnol. Topliv Masel, No. 2, 40–43 (1973).

    Google Scholar 

  29. S. Ramacrishan, R. Kumar, and N. R. Kuloor, Chem. Eng. Sci.,24, No. 4, 731–748 (1969).

    Google Scholar 

  30. M. Sano, K. Mori, and Y. Fujita, JIST Jpn.,65, No. 8, 1140–1148 (1979).

    Google Scholar 

  31. A. K. Khurana and R. Kumar, Chem. Eng. Sci.,23, No. 11, 1711–1723 (1968).

    Google Scholar 

  32. S. L. Sullivan, B. N. Hardy, and C. D. Holland, AIChE J.,10, No. 6, 848–854 (1964).

    Google Scholar 

  33. J. F. Mahoney and L. A. Wenzel, AIChE J.,9, No. 5, 641–645 (1963).

    Google Scholar 

  34. K. Satyanarayan, R. Kumar, and N. R. Kuloor, Chem. Eng. Sci.,24, 749–762 (1969).

    Google Scholar 

  35. G. F. Sheele and B. J. Meister, AIChE J.,14, No. 1, 15–19 (1968).

    Google Scholar 

  36. B. J. Meister and G. F. Sheele, AIChE J.,15, No. 5, 658–670 (1969).

    Google Scholar 

  37. F. W. Keith and A. W. Hixon, Ind. Eng. Chem.,47, No. 2, 258–267 (1955).

    Google Scholar 

  38. M. Dosoudil, Chem. Ing. Techn.,43, No. 21, 1172–1176 (1971).

    Google Scholar 

  39. V. F. Dunskii and N. V. Nikitin, Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 42–48 (1976).

    Google Scholar 

  40. V. B. Okhotskii, Inzh.-Fiz. Zh.,47, No. 4, 550–558 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 54, No. 2, pp. 203–211, February, 1988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okhotskii, V.B. Droplet formation from a jet of one liquid entering another. Journal of Engineering Physics 54, 138–144 (1988). https://doi.org/10.1007/BF00878412

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00878412

Keywords

Navigation