Aquatic Sciences

, Volume 52, Issue 1, pp 103–114 | Cite as

Hydrophobic and electrostatic parameters in bacterial adhesion

Dedicated to Werner Stumm for his 65th birthday
  • Mark C. M. van Loosdrecht
  • Willem Norde
  • Johannes Lyklema
  • Alexander J. B. Zehnder
Article

Abstract

Recently it has been shown that the initial stages of bacterial adhesion to a model-surface of sulphated polystyrene can best be described using hydrophobic and electrostatic parameters. In the present study it is tested whether these parameters can generally be applied to predict bacterial adhesion by using (i) glass, as a model for hydrophilic and natural surfaces of silicates and oxides, (ii) polystyrene coated with proteins, as a model for a surface coated with an organic layer, and (iii) river Rhine sediment, as an example of a natural surface. Adhesion to glass was dominated by electrostatic interaction, whereas adhesion to polystyrene coated with various types of proteins depended on the surface characteristics of the bacteria and the type of protein. By relating Van der Waals interactions to hydrophobicity of the interacting species, the adhesion of bacteria to the various surfaces including the river Rhine sediments could be interpreted in terms of the DLVO-theory. It is therefore concluded that the conceptual principles of the DLVO-theory (interplay of Van der Waals and electrostatic interactions) are suitable to describe, at least qualitatively, the initial processes of bacterial adhesion to a wide range of surfaces.

Key words

Adhesion DLVO theory adhesion isotherm hydrophobic interactions electrostatic interactions protein coating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Absolom, D. R., F. V. Lamberti, Z. Policova, W. Zingg, C. J. van Oss and A. W. Neumann, 1983. Surface thermodynamics of bacterial adhesion. Appl. Environ. Microbiol. 46:90–97.PubMedGoogle Scholar
  2. 2.
    Busscher, H. J., A. H. Weerkamp, H. C. van der Mei, A. W. J. van Pelt, H. P. de Jong and J. Arends, 1984. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl. Environ. Microbiol. 48:980–983.PubMedGoogle Scholar
  3. 3.
    Caldwell, D. E. and J. R. Lawrence, 1986. Growth kinetics ofPseudomonas fluorescens microcolonies within the hydrodynamic boundary layers of surface microenvironments. Microbial Ecol. 12:299–312.Google Scholar
  4. 4.
    Dexter, S. C., 1979. Influence of substratum critical surface tension on bacterial adhesion—in situ studies. J. Coll. Interf. Sci. 70:346–354.Google Scholar
  5. 5.
    Mc Eldowney, S. and M. Fletcher, 1986. Variability of the influence of physicochemical factors affecting bacterial adhesion to polystyrene substrata. Appl. Environ. Microbiol. 52:460–465.Google Scholar
  6. 6.
    Fletcher, M., 1976. The effects of proteins on bacterial attachment to polystyrene. J. Gen. Microbiol. 94:400–404.PubMedGoogle Scholar
  7. 7.
    Fletcher, M. and G. I. Loeb, 1979. Influence of substratum characteristics on the attachment of a marine Pseudomonad to solid surfaces. Appl. Environ. Microbiol. 37:67–72.Google Scholar
  8. 8.
    Larsson, K. and P. O. Glantz, 1981. Microbial adhesion to surfaces with different surface charges. Acta Odontol. Scand. 39:79–82.PubMedGoogle Scholar
  9. 9.
    Loosdrecht, M. C. M. van, W. Norde and A. J. B. Zehnder, 1987. Influence of cell surface characteristics on bacterial adhesion to solid supports. Proc. 4th Eur. Congr. Biotechn. 4:575–580.Google Scholar
  10. 10.
    Loosdrecht, M. C. M. van, J. Lyklema, W. Norde, G. Schraa and A. J. B. Zehnder, 1987. The role of bacterial cell wall hydrophobicity in adhesion. Appl. Environ. Microbiol. 53:1893–1897.PubMedGoogle Scholar
  11. 11.
    Loosdrecht, M. C. M. van, J. Lyklema, W. Norde, G. Schraa and A. J. B. Zehnder, 1987. Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. Environ. Microbiol. 53:1898–1901.PubMedGoogle Scholar
  12. 12.
    Loosdrecht, M. C. M. van, J. Lyklema, W. Norde and A. J. B. Zehnder, 1988. Bacterial adhesion: a physico chemical approach. Microb. Ecol. 17:1–15.Google Scholar
  13. 13.
    Marshall, K. C., R. Stout and R. Mitchell, 1971. Mechanisms of the initial events in the sorption of marine bacteria to surfaces. J. Gen. Microbiol. 68:337–348.Google Scholar
  14. 14.
    Meadows, P.S., 1971. The attachment of bacteria to solid surfaces. Arch. Microbiol. 75:374–381.Google Scholar
  15. 15.
    Mei, H. C. van der, A. H. Weerkamp and H. J. Busscher, 1987. Physico-chemical surface characteristics and adhesive properties ofStreptococcus salivarius strains with defined cell surface structures. FEMS Microbiol. Lett. 40:15–19.Google Scholar
  16. 16.
    Miörner, H., E. Myhre, L. Björck and G. Kronvall, 1980. Effect of specific binding of human albumin, fibrinogen and immunoglobuline G on surface characteristics of bacterial strains as revealed by partition experiments in polymer phase systems. Inf. Imm. 29:879–885.Google Scholar
  17. 17.
    Nir, S., 1976. Van der Waals interactions between surfaces of biological interest. Progr. Surf. Sci. 8:1–58.Google Scholar
  18. 18.
    Norde, W., 1986. Adsorption of proteins from solution at the solid-liquid interface. Adv. Coll. Interf. Sci. 25:267–340.Google Scholar
  19. 19.
    Paul, J. H. and W. H. Jeffrey, 1985. Evidence for separate adhesion mechanisms for hydrophilic and hydrophobic surfaces inVibrio proteolytica. Appl. Environ. Microbiol. 50:431–437.Google Scholar
  20. 20.
    Pringle, J. H. and M. Fletcher, 1986. Influence of substratum hydration and adsorbed macromolecules on bacterial attachment to surfaces. Appl. Environ. Microbiol. 51:1321–1325.PubMedGoogle Scholar
  21. 21.
    Rouxhet, P. G., N. Mozes, J. L. van Haecht, L. Reuliause and M. H. Palm-Gennen, 1984. Immobilization of microbial cells by adhesion to a support. In: Proc. third european congress on biotechnology, Verlag Chemie, Weinheim pp. I 319–325.Google Scholar
  22. 22.
    Roosendaal, B., W. Gaastra and F. K. de Graaf, 1984. The Nucleotide sequence of the gene encoding the k99-subunit of enterotoxicEscherichia coli. FEMS Microbial. Lett. 22:253–258.Google Scholar
  23. 23.
    Rutter, P. R. and B. Vincent, 1984. Physicochemical interactions of the substratum, microorganisms, and the fluid phase. In: K. C. Marshall (ed.), Microbial adhesion and aggregation, Springer Verlag, Berlin, pp. 21–38.Google Scholar
  24. 24.
    Stumm, W. and J. J. Morgan, 1981. Aquatic Chemistry. John Wiley & Sons, New York.Google Scholar
  25. 25.
    Ulrich, H. J., W. Stumm and B. Cosovic, 1988. Adsorption of aliphatic fatty acids on aquatic interfaces. Comparison between two model surfaces: The mercury electrade andσ-Al2O3 Colloids. Environ. Sci. Technol. 22:37–41.Google Scholar
  26. 26.
    Visser, J., 1972. On Hamaker constants: A comparison between Hamaker constants and Lifshitz-Van der Waals constants. Adv. Coll. Interf. Sci. 3:331–363.Google Scholar
  27. 27.
    Xue, Han-Bin, W. Stumm and L. Sigg, 1988. The binding of heavy metals to algal surfaces. Water Res. 22:917–926.Google Scholar
  28. 28.
    Zehnder, A.J.B., B.A. Huser, T.D. Brock and K. Wuhrmann, 1980. Characterization of an acetate-decarboxylating non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 124:1–11.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • Mark C. M. van Loosdrecht
    • 1
  • Willem Norde
    • 2
  • Johannes Lyklema
    • 2
  • Alexander J. B. Zehnder
    • 1
  1. 1.Department of MicrobiologyAgricultural UniversityWageningenThe Netherlands
  2. 2.Department of Physical and Colloid ChemistryAgricultural UniversityWageningenThe Netherlands

Personalised recommendations