Skip to main content
Log in

Salt intake, blood pressure, and cardiovascular structure

  • Review
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

Epidemiologic data revealed that a low sodium intake might have a favorable influence on blood pressure throughout an individual's lifetime. Sodium restriction was reported to lead to a modest fall in blood pressure in some studies, although a few groups of hypertensive patients experienced a rise in blood pressure. Left ventricular hypertrophy has been demonstrated to be related to cardiovascular morbidity and mortality independent of other risk factors. Dietary salt intake participates in the hypertrophic process independent of other determinants. Thus, 24-hour urinary sodium excretion has been reported to correlate with left ventricular mass independent of levels of arterial pressure. Three different mechanisms may link dietary salt intake to myocardial hypertrophy: the renin-angiotensin-aldosterone system, the sympathetic nervous system, and fluid volume homeostasis. Whether salt restriction reduces cardiovascular structural damage independent of arterial pressure has not been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambard C, Beaujard E. Causes of arterial hypertension. In: Rustin A, ed.Classics in Arterial Hypertension. Springfield, IL: Charles C. Thomas, 1956:297–310.

    Google Scholar 

  2. Maddocks I. Blood pressures in Melanesians.Med J Austral 1967;1:1123–1126.

    PubMed  Google Scholar 

  3. Dahl LK. Possible role of salt intake in the development of essential hypertension. In: Bock KD, Cottier PT, eds.Essential Hypertension, Springer: Berlin-Heidelberg, 1960:53–65.

    Google Scholar 

  4. Prior AM, Evans JG, Harvey HBP, Davidson F, Lindsey M. Sodium intake and blood pressure in two Polynesian populations.N Engl J Med 1968;279:515–520.

    PubMed  Google Scholar 

  5. Maxwell MH, Waks AU, Cations and hypertension: Sodium, potassium, calcium and magnesium.Med Clin North Am 1987;71:859–875.

    PubMed  Google Scholar 

  6. Miall WE. Follow-up study of arterial pressure in the population of a Welsh mining valley.Br Med J 1959;2:1204–1210.

    Google Scholar 

  7. Dahl LK, Love RA. Evidence of relationship between sodium (chloride) intake and human hypertension.Arch Intern Med 1954;94:525–531.

    Google Scholar 

  8. Dawber TR, Kannel CB, Kagan A. Donalbedian RK, McNamara P, Pearson G. Environmental factors in hypertension. In: Stamler I, Stamler R, Pullman T, eds.The Epidemiology of Hypertension, Vol. 1. 1979;1:529–536.

    Google Scholar 

  9. Simpson FO, Nye ER, Bolli P, et al. The Milton Survey: Part I—General methods, height, weight and 24 hour excretion of sodium, potassium, calcium, magnesium and creatinine.NZ Med J 1978;87:379–382.

    Google Scholar 

  10. Simpson FO, Waal-Manning HJ, Bolli P, Phelan EL, Spears GF. Relationship of blood pressure to sodium excretion in a population survey.Clin Sci Mol Med 1978;4(Suppl):373s-375s.

    Google Scholar 

  11. Ljungmann S, Aurell M, Hartford M, Wikstrand Y, Wilhelmsen L, Berglund G. Sodium excretion and blood pressure.Hypertension 1981;3:318–326.

    PubMed  Google Scholar 

  12. Langford HG, Watson RL, Douglas BH. Factors affecting blood pressure in population groups.Trans Assoc Am Phys 1968;81:135–146.

    PubMed  Google Scholar 

  13. Takahashi E, Saaski N, Takeda J, Ito H. The geographic distribution of cerebral hemorrhage and hypertension in Japan.Hum Biol 1957:139–166.

  14. The Intersalt Cooperative Research Group. Intersalt: An international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium.Br Med J 1988;297:319–328.

    Google Scholar 

  15. Grobbee DE, Hofman A. Does sodium restriction lower blood pressure?Br Med J 1986;293:27–29.

    Google Scholar 

  16. Morgan T, Nowson C. The role of sodium restriction in the management of hypertension.Can J Physiol Pharmacol 1986;64:786–792.

    PubMed  Google Scholar 

  17. MacGregor GA, Markandu ND, Sagnella GA, Singer DR, Cappuccio FP. Double-blind study of three sodium intakes and long-term effects of sodium restriction in essential hypertension.Lancet 1989;2:1244–1247.

    PubMed  Google Scholar 

  18. Australian National Health and Medical Research Council Dietary Salt Study Management Committee. Fall in blood pressure with modest reduction in dietary salt intake in mild hypertension.Lancet 1989;1:399–402.

    Google Scholar 

  19. Kawasaki T, Delea CS, Bartter FC, Smith H. The effect of high-sodium and low-sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension.Am J Med 1978;64:193–198.

    PubMed  Google Scholar 

  20. Weinberger MH, Miller IZ, Luft FC, Grim CE, Fineberg NS. Definitions and characteristics of sodium sensitivity and blood pressure resistance.Hypertension 1986;8(Suppl II):II127-II134.

    PubMed  Google Scholar 

  21. Weinberger MH, Fineberg NS. Sodium and volume sensitivity of blood pressure: Age and pressure changes over time.Hypertension 1991;18:67–71.

    PubMed  Google Scholar 

  22. Luft FC, Miller JZ, Grim CE, et al. Salt sensitivity and resistance of blood pressure: Age and race as factors in physiological response.Hypertension 1991;17(Suppl I):102–108.

    Google Scholar 

  23. Sullivan JM. Salt sensitivity: Definition, conception, methodology and long-term issues.Hypertension 1991;17(Suppl I):I61-I68.

    PubMed  Google Scholar 

  24. Rocchini AP, Key J, Bondie D, et al. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents.N Engl J Med 1989;321:580–585.

    PubMed  Google Scholar 

  25. Sharma AM, Schattenfroh S, Kribben A, Distler A. Reliability of salt sensitivity testing in normotensive subjects.Klin Wochenschr 1989;67:632–634.

    PubMed  Google Scholar 

  26. Sharma AM, Kribben A, Schattenfroh S, Cetto C, Distler A. Salt sensitivity in humans is associated with abnormal acid-base regulation.Hypertension 1990;16:407–413.

    PubMed  Google Scholar 

  27. Kannel WB, Gordon T, Offutt D. Left ventricular hypertrophy by electrocardiogram: Prevalence, incidence and mortality in the Framingham study.Ann Intern Med 1969;71:89–105.

    PubMed  Google Scholar 

  28. Kannel WB. Prevalence and natural history of electrocardiographic left ventricular hypertrophy.Am J Med (1983);75(Suppl 3A):4–11.

    Google Scholar 

  29. Aronow WS, Koenigsberg M, Schwartz KS. Usefulness of echocardiographic left ventricular hypertrophy in predicting new coronary events and artherothrombotic brain infarction in patients over 62 years of age.Am J Cardiol 1988;61:1130–1132.

    PubMed  Google Scholar 

  30. Casale PN, Devereux RB, Milner M, et al. Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertenisive men.Ann Intern Med 1986;105:173–178.

    PubMed  Google Scholar 

  31. Nunez BD, Messerli FH, Amodeo C, Garavaglia GE, Schmieder RE, Frohlich ED. Biventricular cardiac hypertrophy in essential hypertension.Am Heart J 1987;114:813–818.

    PubMed  Google Scholar 

  32. Devereux RB, Savage DD, Sachs I, Laragh JH. Relation of hemodynamic load to left ventricular hypertrophy and performance in hypertension.Am J Cardiol 1983;51:171–176.

    PubMed  Google Scholar 

  33. Messerli FH, Sundgaard-Riise K, Ventura HO, Dunn FG, Oigman W, Frohlich ED. Clinical and hemodynamic determinants of left ventricular dimensions.Arch Intern Med 1984;144:477–481.

    PubMed  Google Scholar 

  34. Messerli FH, Schlant RC (eds). Proceedings of a Symposium: Left ventricular hypertrophy in essential hypertension—mechanisms and therapy.Am J Med 1983;75(Suppl 3A):1–120.

    Google Scholar 

  35. Yamori Y, Mori C, Nishio T, et al. Cardiac hypertrophy in early hypertension.Am J Cardiol 1979;44:964–969.

    PubMed  Google Scholar 

  36. Messerli FH, Sundgaard-Riise K, Reisin ED, et al. Dimorphic cardiac adaptation to obesity and arterial hypertension.Ann Intern Med 1983;99:757–761.

    PubMed  Google Scholar 

  37. Devereux RB, Pickering TG, Cody RJ, Laragh JH. Relation of renin-angiotensin system activity to left ventricular hypertrophy and function in experimental and human hypertrophy.J Clin Hypertens 1987;3:87–103.

    PubMed  Google Scholar 

  38. Kannel WB. Left ventricular hypertrophy as a risk factor: The Framingham experience.J Hypertens Suppl 1991;9(Suppl 2):S3-S9.

    Google Scholar 

  39. Devereux RB, Savage DD, Drayer JI, Laragh JH. Left ventricular hypertrophy and function in high, normal and low renin forms of essential hypertension.Hypertension 1982;4:524–531.

    PubMed  Google Scholar 

  40. Julius S, Li Y, Brant D, Krause L, Buda AJ. Neurogenic pressor episodes fail to cause hypertension, but do induce cardiac hypertrophy.Hypertension 1989;13:422–429.

    PubMed  Google Scholar 

  41. Dahlof B, Pennert K, Hansson L, Reversal of left ventricular hypertrophy in hypertensive patients. A meta-analysis of 109 treatment studies.Am J Hypertens 1992;5:95–110.

    PubMed  Google Scholar 

  42. Yurenev AP, Dyakonova HG, Novikov ID, et al. Management of essential hypertension in patients with different degrees of left ventricular hypertrophy. Multicenter trial.Am J Hypertens 1992;5:182s-189s.

    PubMed  Google Scholar 

  43. Schmieder RE, Messerli FH, Garavaglia GE, Nunez BD. Dietary salt intake; a determinant of cardiac involvement in essential hypertension.Circulation 1988;78:951–956.

    PubMed  Google Scholar 

  44. Schmieder RE, Rockstroh JK, Messerli FH. Dietary salt intake modifies cardiac hypertrophy in essential hypertension.Cardiovasc Rev Rep 1990;11:59–64.

    Google Scholar 

  45. du Cailar G, Ribstein J, Daures JP, Mimran A. Sodium and left ventricular mass in untreated hypertensive and normotensive subjects.Am J Physiol 1992;263:H177–181.

    PubMed  Google Scholar 

  46. Blake J, Devereux RB, Borer IS, Szule M, Pappas TW, Laragh JH. Relation of obesity, high sodium intake, and eccentric left ventricular hypertrophy to left ventricular exercise dysfunction in essential hypertension.Am J Med 1990;88:477–485.

    PubMed  Google Scholar 

  47. Heimann JC, Drumond S, Alves AT, Barbato AJ, Dichtchekenian V, Marcondes M. Left ventricular hypertrophy is more marked in salt-sensitive than in salt-resistant hypertensive patients.J Cardiovasc Pharmacol 1991;17(Suppl 2):S122-S124.

    Google Scholar 

  48. Hollenberg NK. The renin-angiotensin and sodium homeostasis.J Cardiovasc Pharmacol 1984;6:S176-S183.

    PubMed  Google Scholar 

  49. Hollenberg NK. Intrarenal and systemic actions of the renin-angiotensin system. Implications for renal excretory function and sodium homeostasis.Contrib Nephrol 1984;43:102–113.

    PubMed  Google Scholar 

  50. Fernandez D, Bolli P, Snedden W, Vasdev S, Fernandez PG. Modulation of left ventricular hypertrophy by dietary salt and inhibition of angiotensin converting enzyme.J Hypertens 1988;6(Suppl 4):S145-S147.

    Google Scholar 

  51. Skrabal F, Aubock J, Hortnagl H. Low sodium/high potassium diet for prevention of hypertension: Probable mechanisms of action.Lancet 1981;2:895–900.

    PubMed  Google Scholar 

  52. Ostman-Smith I. Cardiac sympathetic nerves as the final common pathway in the induction of adaptive cardiac hypertrophy.Clin Sci 1981;61:265–272.

    PubMed  Google Scholar 

  53. Tarazi RC, Sen S, Saragoca M, Khairallah P. The multifactorial role of catecholamines in hypertensive cardiac hypertrophy.Eur Heart J 1982;3(Suppl A):103–110.

    Google Scholar 

  54. Fields NG, Yuan B, Leenen FH. Sodium-induced cardiac hypertrophy. Cardiac sympathetic activity versus volume load.Circ Res 1991;68:745–755.

    PubMed  Google Scholar 

  55. Sullivan JM, Ratts TE, Schoeneberger AA, Samaha JK, Palmer ET. The effect of diet on echocardiographic left ventricular dimensions in normal men.Am J Clin Nutr 1979;32:2410–2415.

    PubMed  Google Scholar 

  56. Ferrara LA, de Simone G, Pasanisi F, Mancini M, Mancini M. Left ventricular mass reduction during salt depletion in arterial hypertension.Hypertension 1984;6:755–759.

    PubMed  Google Scholar 

  57. Drayer JI, Gardin JM, Weber MA. Echocardiographic left ventricular hypertrophy in hypertension.Chest 1983;84:217–221.

    PubMed  Google Scholar 

  58. Liebson P, Prineas R, Grandits G, Dianzumba S, Grimm R. Variables associated with regression of left ventricular mass (LVM) in the Treatment of Mild Hypertension Study (TOMHS) (abstr).Circulation 1992;86(Suppl I):599.

    Google Scholar 

  59. Sharma AM, Arntz HR, Kribben A, Schattenfroh S, Distler A. Dietary sodium restriction: Adverse effect on plasma lipids.Klin Wochenschrift 1990;68:664–668.

    Google Scholar 

  60. Weder AB, Egan BM. Potential deleterious impact of dietary salt restriction on cardiovascular risk factors.Klin Wochenschrift 1991;69(Suppl XXV):45–50.

    Google Scholar 

  61. Ruppert M, Diehl J, Kolloch R, et al. Short-term dietary sodium restriction increases serum lipids and insulin in salt-sensitive and salt-resistant normotensive adults.Klin Wochenschrift 1991;69(Suppl XXV):51–57.

    Google Scholar 

  62. Luft FC, Weinberger MH. Review of salt restriction and the response to antihypertensive drugs. Satellite symposium on calcium antagonists.Hypertension 1988;11(Suppl 1):1-229–1-232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beil, A.H., Schmieder, R.E. & Messerli, F.H. Salt intake, blood pressure, and cardiovascular structure. Cardiovasc Drug Ther 8, 425–432 (1994). https://doi.org/10.1007/BF00877918

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877918

Key Words

Navigation